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Abstract 

Fault detection and diagnosis is a critical element in the power generation sector. 

Early faults detection ensures that correct mitigation measures can be taken, 

whilst false alarms should be eschewed to avoid unnecessary cost of operation, 

interruption and downtime. Modern power plant is equipped with thousands of 

sensors for monitoring, diagnosis and sensor validation application. By utilizing 

these features, we can use the collected operational data to develop a data-driven 

condition monitoring method. Intelligent Early Warning System (IEWS) 

represented by Artificial Neural Network (ANN), which was developed by 

training the network with real operational data, can be proven useful for real-time 

monitoring of a power plant. In this work, an integrated data preparation method 

was proposed. The ANN models and the hybrid artificial intelligence (AI) of 

ANN with Genetic Algorithm (GA), which is able to detect steam turbine trip for 

Malaysia Jana Manjung (MNJ) power station were developed. The AI models 

adopting ANN and GA were trained with real data from the MNJ station. The 

developed models were capable of detecting the specific trip earlier before the 

actual trip occurrence was detected by the existing control system. The AI model 

provides a good opportunity for further research and implementation of AI in the 

power generation industry especially in fault detection and diagnosis initiatives. 

Keywords: Artificial intelligence, Artificial neural network, Genetic algorithm, 

Steam turbine, Warning system. 

 

  



Development of Intelligent Early Warning System for Steam Turbine       845 

 
 
Journal of Engineering Science and Technology               April 2019, Vol. 14(2) 

 

1.  Introduction 

Predictive maintenance as one of the optimization actions has emerged as an 

excellent method to provide condition-based early warning. In power generation 

industry, it provides early warning on the failure of assets such as combustion 

turbines, steam turbines, boiler feed water pumps and cooling water pumps [1]. One 

of the most important elements in a thermal power plant is its steam turbine. Steam 

turbine trip can lead to the entire plant shutdown, thus, it is very critical to ensure 

that the turbine is at normal operation.  

Standard operating procedures of modern power plants ensure that the operating 

parameters are measured and saved in databases, which can be used for historical 

data analysis and performance analysis. A detailed analysis of these data requires 

time and extensive resources. A data-driven, Intelligent Early Warning Systems 

(IEWS) approach would truly be benefitted from the effective use of the measured 

data and thus lead to full utilization of the capabilities and opportunities provided 

by the historical records of the system operating behaviour. 

By developing an IEWS for steam turbine trips, the causes of turbine trips can 

be identified and mitigation steps can be taken to maintain the normal and safe 

operating condition of the turbine. The operational data of the steam turbine, which 

will be used to drive the algorithm used in the IEWS [2-6], need to be studied and 

measured to detect the tripping trends. Typically, IEWS for steam turbine 

continuously evaluates the operation state and parameters of a steam turbine by 

collecting data from various sensors within the turbine. By diagnosing the state of 

the turbine, IEWS determines the condition of the turbine. IEWS can then perform 

several thousand of fault detection steps every second.  

The main benefit of IEWS includes giving the user the ability to detect early 

symptoms of a developing problem thus enabling condition-based maintenance. 

With the early warning system, the maintenance team will be able to troubleshoot 

and bring the turbine back online as quickly as possible. There are also several 

preferred features for modern IEWS such as comprehensive graphics data, data 

visualization, detailed replaying of data, remote access, automated reports, and 

notification via email or Short Message Service (SMS). In this work, a few research 

objectives to be achieved are to investigate and analyse the operational data of 

steam turbine in JanaManjung (MNJ) power plant and to prepare an integrated data 

preparation method for future data. Furthermore, this work aims to analyse the 

operational behaviour trends that lead to turbine trips and to propose an operational 

threshold to determine the operating states of the steam turbine and to develop an 

Intelligent Early Warning System for steam turbine trips by the application of 

artificial neural network and a hybrid application (artificial neural network + 

genetic algorithm). 

2.  Artificial Intelligence, Artificial Neural Network, Genetic 

Algorithm, Steam Turbine  

For the last few decades, there has been an explosion of interest in Artificial 

Intelligence (AI) application for thermal power plant especially with the rapid 

development in the area of ANN. ANN is based on simple principles but takes 

advantage of their mathematical nature, non-linear iteration to demonstrate 

powerful problem-solving ability. With the massive possibility and room for 
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improvement in AI, the inspiration to carry out research in this area is apparent and 

literally, hundreds of papers have been published to discuss and present the findings 

of hybrid AI for condition monitoring purposes. Explanation on the core element 

of AI particularly in the field of ANN and GA and the studies of other hybrid AI 

application including their characteristics will be elaborated. Finally, it provides an 

overview and justification of the methodology chosen in this research. 

Typically, a power plant operation will be monitored by a control system. This 

system consists of several thousands of sensors placed in the various critical and 

strategic area throughout the power plant. These sensors feed the control system 

with various parameter reading, which will then be used by the control system to 

diagnose the power plant current operating state. IEWS should be able to perform 

condition-based maintenance. By detecting early symptoms of a developing 

problem, it can improve the power plant reliability and reduce unnecessary plant 

shut down. During the fault, the IEWS should be able to pinpoint the exact location 

of the faulty area. This will improve fault troubleshooting and corrective action can 

be implemented precisely. Modern IEWS typically have several other features such 

as comprehensive graphical user interface, wireless remote access, automated fault 

report generation, and notification via email or text messages.  

2.1. Artificial intelligence 

Development of AI has been initiated since the early 1950s. The critically 

acclaimed yet widely used Expert Systems (ES) have been introduced in the 1970s 

from their first generation of DENDRAL, MYCIN, and PROSPECTOR [7]. ES 

technology continues to develop following the next decade and contributes towards 

Knowledge Engineering (KE) that pioneered the Intelligence System (IS). Kishore 

et al. [8] explained that, AI quickly gained another resurgence of popularity among 

researchers during the 1980s particularly in the field of ANN with the introduction 

of fuzzy set theory and soft computing along with the high processing capabilities 

of the computer during that time. There is a various artificial intelligent system, 

which can be adopted for an early warning system. Described in this section are 

some of the most relevant methods for the research scope. 

2.2. Artificial neural network 

This subsection summarizes the application and development of artificial 

intelligence systems particularly with ANN technique in thermal power plants 

throughout the years 2010 to 2015. ANN is a fast-growing soft computing method, 

which has been used in different types of industries recently. ANN is a 

computational model that is inspired by natural neurons. A neural network model 

is made up of interconnected artificial units (neurons). Neurons are arranged in 

different layers, including an input layer, hidden layer(s), and an output layer. The 

number of neurons and layers depends on the type of problems need to be solved 

and the complexity of the system to be modelled. 

2.3. Genetic algorithm 

GA is a way of solving problems by mimicking the natural processes combination 

of selection, recombination and mutation to evolve a solution to a problem. 

Furthermore, based on studies by Benazzouz et al. [7], GA exploits historical 

information to direct the search into better performance within the search 
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parameters. GA exploits the historical information to direct the search into better 

performance within the search parameters. Compared to the traditional way of 

exploring each of the probability for a solution, GA performs exceptionally well 

in finding the most optimal solution or combination of sequence, especially 

within a huge data. It is widely used in many fields such as business, science and 

engineering to provide solutions for optimization, search problems, scheduling 

and timetabling [8, 9]. 

Application of Genetic Algorithm 

Table 1 summarizes the literature review on ANN optimization by adopting hybrid 

ANN with GA application.  

Table 1. Summary of previous researches on ANN hybrid with GA. 

Author Optimization Types of 

data 

Application 

area 

Proposed research Parameter selection, 

ANN structure 

Real data Steam turbine 

Kishore et al. [ 8] Parameter selection Real data Production line 

Wu [9, 10] Parameter selection Real data Automatic car 

assembly 

Fritzen et al. [11] Parameter selection Real data Centrifugal pump 

Huang et al. [12] Parameter selection, 

weights and bias 

Real data Power 

transformers 

Tang et al. [13] ANN structure Simulation Gear 

Guolian et al. [14] ANN structure Simulation Wind turbine 

Li et al. [15] ANN structure, weights 
and bias 

Simulation Voltage source 
inverter 

Yang et al. [16] Parameter selection Simulation Gear box 

Zhang et al. [17] ANN structure Simulation Automobile 
engine 

Xiao-qin [18] ANN structure, weights 

and bias 

Simulation Chemical reactor 

Gui-li et al. [19] ANN structure Real data Motor 

2.4. Steam turbine 

Modern steam turbine was invented in 1884 by Sir Charles Parsons. He created a 

turbine capable of using compounded steam that turned a dynamo at 18,000 

revolutions a minute. In 1890, his steam turbine and accompanying electric 

generator were installed in the Forth Banks power station. According to Keysen 

[20], Parsons' steam turbine made cheap and plentiful electricity possible and the 

technology quickly spread afterwards.  

In today’s modern power generation, steam turbine continues to be the major 

driving technology throughout the world. Even nuclear power plants are using a 

steam turbine, generating power from steam produced by heat generated from 

controlled nuclear chain reaction. Due to the importance of steam turbine, power 

producers are forced to continuously investigate various means of maintaining and 

increasing steam turbine efficiency, reliability, availability and maintainability. To 

increase its availability, steam turbine maintenance can be scheduled based on 

condition monitoring rather than operating hours. Reliability can be improved by 

using monitoring tools that alert plant operators to take mitigation action before 

faults are fully developed. 
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2.5.  Characteristics and specification 

The characteristic and specification of a steam turbine can be summarized in Table 2 [20]. 

Table 2. Characteristic and specification of steam turbine. 

Characteristics Specifications 

Fuel flexibility Steam turbines have a wide range of fuel flexibility. It uses a variety of 

fuel sources in the boiler including coal, oil, natural gas and biomass 

Reliability and 

lifetime 

Steam turbine’s lifetime is very long. There are steam turbines that have 

been in service for over 50 years. Overhaul intervals are measured in 

years.  

Availability Steam turbines are considered to have high availability with more than 

one year needed between shutdowns for maintenance and inspections 

Size range Steam turbines are available in different sizes from under 100 kW to over 
250 MW 

Emissions Emissions are dependent upon the fuel used by the boiler, boiler furnace 

combustion design, and the boiler exhaust cleanup systems 

3.  Design and Modelling of Intelligent Early Warning System 

Trips in power plants occur when a certain parameter exceeds their normal values 

or limits and an alert alarm is triggered. The boiler records the highest number of 

trips compared to other components of power plants. Boiler tube failures ranked as 

the number one equipment problem in coal-fired power plants [21, 22]. 

The design and modelling of the proposed IEWS were developed with the help 

of MATLAB. The type of intelligent system used was a feed-forward ANN that is 

described later in details. In this research, two IEWS approaches were adopted. The 

first approach used pure ANN model while the second used hybrid AI approach to 

optimize the ANN structure with GA. For the first ANN approach, the development 

procedures focused on the topology selection and training of the ANN. On the other 

hand, the second approach focused on the genetic algorithm operators, GA design 

parameter, encoding process and the hybrid AI scheme. 

3.1. IEWS_I (Pure ANN) 

Choosing a good topology is a crucial task for the success of any ANN modelling. The 

topology selection influences the learning process, time, and its classification. The 

selection criteria in this research were based on its impact on the network performance. 

The main NN topologies include; training algorithms, learning rate, momentum 

coefficient, activation functions, the number of hidden layers, and the number of hidden 

layer neurons. Table 3 shows the list of the algorithm used with descriptions. 

Table 3. Training algorithm description. 

Algorithm Description 

trainscg  Scaled conjugate gradient backpropagation  

 Backpropagation is used to calculate derivatives of performance with respect 

to the weight and bias variables 

 Uses less memory 

trainlm  Levenberg-Marquardt backpropagation trainlm is often the fastest 
backpropagation algorithm in the toolbox and is highly recommended as a 

first-choice supervised algorithm, although it does require more memory than 

other algorithms 

trainbr  Bayesian regulation backpropagation 
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 It minimizes a combination of squared errors and weights and then 

determines the correct combination to produce a network that generalizes 

well. The process is called Bayesian regularization 

 Takes longer time but may be better for challenging problems 

3.1.1. Design of IEWS_I (Pure ANN) 

The IEWS_I is a pure ANN condition monitoring system. The feed-forward 

methodology was adopted to develop the IEWS_I. The ANN inputs are listed in Table 

4, thus, the network had thirty-two inputs as shown in Fig. 1. The number of neuron 

in each hidden layer was determined by trial and error. The proposed IEWS_I was 

formed to have a fuzzy outputs ranging from 0 to 1 according to the threshold 

determined with the help of the plant expert and after analysing the variable 

behaviour, which were: normal operation below 0.3, medium alarm warning was 

between 0.3-0.5, high alarm warning was between 0.5-0.7, and high-high alarm 

warning was above 0.7. The codes for IEWS_I were built using MATLAB. 

Table 4. Influential operation variables. 

Variables Description Unit 
v1 Steam flow ton/hr 

v2 FW flow ton/hr 

v3 drum pressure Barg 

v4 SH steam pressure Barg 

v5 SH steam temperature °C 

v6 E inlet temperature °C 

v7 HT Re-heater outlet temperature °C 

v8 HT SH exchange metal temperature °C 

v9 SH exchange metal (A) temperature °C 

v10 HT SH inlet header metal temperature °C 

v11 Final SH outlet temperature °C 

v12 SH steam (control) pressure Bar 

v13 FW valve station flow ton/hr 

v14 FW control valve position % 

v15 E inlet pressure Bar 

v16 Drum level corrected Mm 

v17 Drum level compensated Mm 

v18 E outlet temperature °C 

v19 FW flow transmitter % 

v20 Boiler circulation pump1 pressure Bar 

v21 Boiler circulation pump 2 pressure Bar 

v22 LT SH left wall outlet temperature °C 

v23 LT SH right wall outlet temperature °C 

v24 LT SH left wall temperature °C 

v25 LT SH right wall exchange metal temperature °C 

v26 SH exchange metal (B) temperature °C 

v27 Intermediate SH outlet temperature °C 

v28 Intermediate SH outlet header metal temperature. °C 

v29 HT SH outlet header metal temperature °C 

v30 HT Re-heater outlet steam pressure Bar 

v31 Superheated steam pressure Bar 

v32 SH water injection flow ton/hr 
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Fig. 1. Basic representation of Input Layer, Hidden Layer 1,  

Hidden Layer 2 and Output for the proposed ANN. 

3.1.2. Training, testing and validation of IEWS_I (Pure ANN) 

The ANN training was done in order to find out the optimal NN topology 

combination. A trip data sets (Faulty data) were used as an input to the IEWS_I. The 

data sets were segmented as 70% for training, 15% for testing and the remaining 15% 

for validation. Various candidates of NN topologies were investigated for both 1 

Hidden Layer (HL) and 2HL. Several numbers of neurons for each hidden layer 

ranging from one to ten were tested. Thirty-two boiler operation variables were 

considered as network inputs. The training results were compared based on the Root 

Mean Square Error (RMSE) as a network performance indicator. 

3.2. IEWS_II (Hybrid ANN+GA) 

In developing IEWS_I model, we have adopted trial and error approach in 

determining the best ANN topology structure. GA can be adopted in optimizing the 

ANN model thus creating a hybrid AI of ANN and GA (ANN+GA). There are several 

proposed optimization techniques by GA, which generally fall into three categories. 

 Input parameter selection 

 ANN structure optimization 

 Bias and weight optimization 

3.2.1. IEWS_II design 

In binary coding, the strings are made up of 1’s and 0’s. The length of the strings were 

determined by the number of solution probability. To simplify the structure, for 

comparison and in continuity with the previous pure ANN IEWS model, 1HL and 2HL 

model were separated into two different coding sets. In this research, the parameters 

that were optimized and their number of probabilities are shown in Table 5. 

Table 5. String bit features probability. 

Features/character to be optimized 
Number of probabilities 

1 Hidden layer 2 Hidden layer 
Training algorithm 3 3 

Activation function 9 27 

Number of hidden layer neurons 10 100 

Input variables 2³² = 4,294,967,296 2³² = 4,294,967,296 

3.2.2. IEWS_II Scheme 
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GA approach for any particular problem must have the following components. 

 A genetic representation for the potential solutions to the problem, which is 

the encodings. 

 A way to create an initial population of the potential solutions. 

 An evaluation function to rate the individuals called fitness function. 

 Genetic operators that alter the composition of the offspring. 

 Values for the various parameters that GA uses. (Population size, the 

probability of genetic operators, number of generations). 

The scheme consists of three major sections: the user section where the user 

enters the input, the GA section where the optimization process occurs, and the 

ANN section for ANN training process. Initially, the ANN training dataset (T), the 

number of generations (Gn), the size of population (Pz), the probabilities of 

crossover (Pc), and the mutation probability (Pm) were provided by the user. The 

initial population (Xinit) of several binary strings, each of which represents a specific 

network topology and the NN training parameters were set.  

Next, the user inputs were passed to the main GA optimization part. The internal 

function namely the “GA decoding” receives the population of binary strings in 

order to decode each string of binary into explicit information on the five parts, 

which are: Training algorithms (algo), neuron number (archit) , activation function 

of hidden layer 1 (activf1), activation function of hidden layer 2 (activf2) and the 

NN Training Parameters (Tp). The information was then transferred to an internal 

function named as “NN train”. The RMSE for each individual was calculated after 

each training and sent to the internal function, named as “GA fitness”. Next, GA 

operators produced new children for the next generation. The individuals were 

subjected to crossover and mutation operations of the GA, followed by the 

formation of the new population (Xnew). This process was repeated until (Gn) 

reached the maximum limit of 100.  

4.  Results and Discussion 

Two intelligent monitoring systems were proposed to diagnose turbine trips. The 

results of the proposed IEWS together with some additional information about their 

performance will be discussed in this section. The discussion will be focused on 

determining the best NN topology combination. To get the results, several NN 

topologies were trained for the 1HL case and a 2HL case. The training results of both 

cases were compared based on the RMSE performance indicator. Different numbers 

of neurons for each of the hidden layer cases ranging from one to ten were tested. 

4.1. Result of IEWS_I (Pure ANN) 1 hidden layer 

The training process took place in order to determine the best NN topology 

combination. Several candidate NN topologies were trained for both the 1HL and 

2HL cases. Thirty-two steam turbine operation variables were considered as the 

number of NN inputs and the training results were compared based on the NN 

performance indicator of RMSE. The neuron numbers in each of the hidden layers 

were set to be in range of one to ten hidden neuron. 

Table 6 summarizes the results for NN with 1HL. Based on the results, it was 

proven that trainlm was the fastest training algorithm and from the observation, the 
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average computation time for trainbr was the slowest and some of the training 

reached the maximum epoch of 10,000 iterations. In comparing the best 

performance for each training algorithm, trainbr has the best RMSE of 0.0351, 

followed by trainlm with RMSE of 0.1354, and trainscg with RMSE of 0.1593. 

Table 6. Result summary for 1HL NN. 

TA Act AF RMSE NoI 
trainscg 6HL1 T+T 0.0254 27 

trainlm 4HL1 P+T 0.0183 5 

trainbr 2HL1 T+P 0.0012 18 

 

4.2. Result of IEWS_I (Pure ANN) 2 hidden layer 

The result for NN with two hidden layers is summarized in Table 7. Based on the 

result, it was shown that trainbr was the fastest training algorithm and there were 

plenty of results with a very low error RMSE. In comparing the best performance 

for each training algorithm, trainbr has the best RMSE of 0.0200, followed by 

trainlm with RMSE of 0.1114, and trainscg with RMSE of 0.00197. It is clear, from 

the results discussion, that ANNs with 2HL have better performance compared to 

that of 1HL. 

Table 7. Result summary for 2HL NN. 

TA Act AF RMSE NoI 
trainscg 7HL1-10HL2 P+T+T 0.1404 21 

trainlm 1HL1-5HL2 T+P+T 0.1114 12 

trainbr 1HL1-10HL2 T+T+T 0.0200 10 

4.3. Result of IEWS_ II (hybrid ANN+GA) 1 HL 

Since there was no trial and error process involved in optimizing the model with 

GA, the result with the highest performance from each training algorithm was 

produced as shown in Table 8. It was proven that trainlm was the fastest training 

algorithm with only 8 iterations needed to achieve the desired performance. In 

comparing the best performance for each training algorithm, trainbr has the best 

RMSE of 0.0300, followed by trainscg with RMSE of 0.2298, and trainlm with 

RMSE of 0.2478. Table 9 shows the bit string representation of the best result from 

1HL IEWS_II, which was achieved by trainbr training algorithm. 

Table 8. Result summary for 1HL IEWS_II. 

TA Act AF RMSE NoI 

trainscg 9HL1 T+T 0.2298 13 

trainlm 9HL1 L+T 0.2478 8 

trainbr 4HL1 T+T 0.0300 29 

Table 9. Network topology bit string representation for best 1HL IEWS_II. 

TA AF HLN 

1 1 0 1 0 1 0 1 0 0 
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4.4. Result of IEWS_ II (hybrid ANN+GA) 2 hidden layer 

Since the NN structure of IEWS II was optimized by GA, the trial and error procedure 

was reduced significantly. The results with the highest performance from each 

training algorithm were generated and they are shown in Table 10. In comparing the 

best performance for each training algorithm, trainbr has the best RMSE of 0.0153, 

followed by trainlm with RMSE of 0.0504, and trainscg with RMSE of 0.1816. In 

comparison, hybrid ANN+GA with 2HL have better performance compared to that 

of 1HL. Table 11 shows the bit string representation of the best result from 2HL 

IEWS_II, which was achieved by trainbr training algorithm. 

 

Table 10. Result summary for 2HL IEWS_II. 

TA Act AF RMSE NoI 

trainscg 8HL1-8HL2 P+T+T 0.1816 26 

trainlm 4HL1-6HL2 T+P+T 0.0504 17 

trainbr 8HL1-9HL2 T+T+T 0.0153 16 

Table 11. Network topology bit string representation for best 2HL IEWS_II. 

TA AF HLN 

1 1 0 1 1 1 0 1 0 1 1 0 0 0 

The results for both systems, IEWS_I and IEWS_II are summarized in Tables 12-

15. By analysing the results, advantages and drawbacks of each design 

parameters can be elaborated. These tables also show the detection capability of 

each model compared to the existing control and what the corresponding 

output/alarms were in each case. When comparing between the training 

algorithms, we can conclude the followings:  

 Trainscg: It works best when adopted in IEWS -II, although the accuracy was 

reduced, the output was increased and the detection was earlier compared to 

IEWS -I. Trainscg has good prediction ability. The earliest detection was 

achieved by 1HL IEWS -II using trainscg. It manages to detect the trip 58 

minutes before the actual fault occurrence with an output of 0.59 considered 

as a high warning. 

 Trainlm: In average, this training algorithm was the fastest. The iteration to 

achieved the desired goal rarely exceeds 20 epochs. Most suitable when 

computer processing power is a limitation. The fastest result was achieved by 

1HL IEWS -I using trainlm. The model achieved the desired performance goal 

after only 5 iterations. 

 Trainbr: The slowest training algorithm but it is also the most accurate. The 

prediction ability of this training algorithm was also the slowest. During the 

trial and error procedure, it was found that the training commonly exceeds the 

training limit of 10,000 epoch. Most suitable for application where accuracy is 

the utmost important and superior computer processing power is available. The 

highest accuracy was achieved by 2HL IEWS -II using trainbr. The RMSE for 

this model was only 0.0153. 
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After analysing the output validation graph, it was confirmed that all of the 

proposed IEWS gives a high - high warning in a period of around 20 minutes before 

the actual fault occurrence except for 1HL IEWS-II using trainscg. Even though this 

model gives the earliest detection, it only gives a medium warning until the actual 

fault occurrence where it does give high-high alarm at those particular instances. 

Although by only adopting IEWS-I the objective of detecting the turbine trip 

was already achieved, the development and structure selection of the ANN itself 

requires huge trial and error effort. To duplicate IEWS-I method for other 

equipment or plant would also be hard because of the complexity of the model 

itself. The biggest advantage of IEWS-II was the simplicity of the ANN after it was 

optimized by GA. The best structure will be optimized by GA since the topology 

selection and input variable selection will be automated. Without trial and error 

process and less input variable needed for training, the AI model will be further 

simplified thus making the duplication of IEWS-II method for other equipment or 

plant much more hassle free. 

Two IEWS; pure ANN and hybrid ANN+GA were proposed in this research. 

The results of both IEWS were presented and their advantages and drawbacks 

were discussed in details. The advantages for each training algorithm were 

highlighted and the benefits of adopting the hybrid approach was also explained. 

After analysing the results, the proposed IEWS was proven to be a very viable 

approach to be applied on-line as a feasible control system for a thermal steam 

turbine since all the results manage to detect the trip at least 20 minutes before 

the plant control system. Furthermore, the method is general and can be 

duplicated for other thermal plant.  

Table 12. Result summary for IEWS_I 1HL NN. 

TA Act AF RMSE NoI Det O/P Am 

trainscg 6HL1 T+T 0.1593 27 -31 0.57 High 

trainlm 4HL1 P+T 0.1354 5 -32 0.52 High 

trainbr 2HL1 T+P 0.0351 18 -32 0.47 Medium 

Table 13. Result summary for IEWS_I 2HL NN. 

TA Act AF RMSE NoI Det O/P Am 

trainscg 7HL1-10HL2 P+T+T 0.1404 21 -38 0.67 High 

trainlm 1HL1-5HL2 T+P+T 0.1114 12 -38 0.60 High 

trainbr 1HL1-10HL2 T+T+T 0.0200 10 -32 0.44 Medium 

Table 14. Result summary for IEWS_II 1HL NN. 

TA Act AF RMSE NoI Det O/P Am 
trainscg 9HL1 T+T 0.2298 13 -58 0.59 High 

trainlm 9HL1 L+T 0.2478 8 -39 0.49 Medium 

trainbr 4HL1 T+T 0.0300 29 -38 0.33 Medium 

Table 15. Result summary for IEWS_II 2HL NN. 

TA Act AF RMSE NoI Det O/P Am 

trainscg 8HL1-8HL2 P+T+T 0.1816 26 -38 0.75 High2 

trainlm 4HL1-6HL2 T+P+T 0.0504 17 -20 0.88 High2 

trainbr 8HL1-9HL2 T+T+T 0.0153 16 -20 0.97 High2 
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5.  Conclusions 

Two Intelligent Early Warning System (IEWS) were proposed in this research, 

motivated by the need to develop an early warning for steam turbine trips. IEWS_I 

adopted a pure artificial neural network (ANN) technique whilst IEWS_II adopted 

the hybrid ANN with genetic algorithm (GA) technique. The data utilized to carry 

out the IEWS training and validation was captured from MNJTPP power station in 

Lumut and the process of acquiring and preparing the data was explained. The trip 

considered was a turbine trip due to a sudden steam temperature fall. An integrated 

data preparation method was also introduced for future usage. 

The IEWS was modelled using MATLAB and the computational tool used to 

perform the early warning was feed-forward ANN. The main reason for selecting 

this tool was because of the robustness and reliability of the tool in fault prediction 

and classification for power generation application. 

Four development phases have been proposed and executed to achieve the 

objectives of the research, which consist of: 

 Plant data preparation phase. 

 Data analysis and variable behaviour study. 

 Development of IEWS_I (Pure ANN) phase. 

 Development of IEWS_II (ANN+GA) phase. 

There are several outcomes achieved from this research as shown below: - 

 By adopting feed-forward ANN, the IEWS model was proven as reliable 

because all the models were capable of detecting the turbine trip earlier or 

around at the same time with the target, which is 20 minutes before the actual 

fault detected by existing plant control system. To determine the best model, a 

performance comparison was made using RMSE as a performance indicator. 

 In general, ANN with 2HL produced a more accurate result with lower error 

compared to 1HL ANN.  

 GA optimization was successfully adopted in IEWS_II approach. 

Optimization was done to eliminate the trial and error procedure of IEWS_I 

in deciding the best topology structure for the ANN. In most cases, IEWS_II 

approach is more preferable since the method is automated thus easier to be 

duplicated and adopted. 
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Nomenclatures 
 

activf1 Activation function of hidden layer 1 

activf2 Activation function of hidden layer 2 

algo Training algorithm 

archit Neuron number 
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Gn Number of generations 

Pc The probabilities of crossover 

Pm The mutation probability 

Pz Size of population 

T Training dataset 

Tp The NN training parameter 

Xinit Initial population 

Xnew Formation of new population 

 

Abbreviations 

Act Architecture 

AF Activation Function 

AI Artificial Intelligence 

ANN Artificial Neural Network 

Am Alarm 

Det Detection 

E Economizer 

ES Expert Systems 

FW Feedwater 

GA Genetic Algorithm 

HL Hidden Layer 

HLN Hidden Layer Neuron 

HT High Temperature 

IEWS Intelligent Early Warning System 

KE Knowledge Engineering 

LT Low Temperature 

MNJ Jana Manjung 

MNJTPP Jana Manjung Thermal Power Plant 

NN Neural Network 

NoI Number of Iterations 

O/P Output 

RMSE Root Mean Square Error 

SH Superheater 

SMS Short Message Service 

TA Training Algorithm 
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