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INTRODUCTION 
Classical joints always experience some form of clearance, causing oscillation and friction to occur, which induces 

wear in the joint. As a result, flexure hinge (FH) was designed, and it has since been applied in many mechanisms as a 
replacement for traditional joints. In this investigation, displacement amplification ratio (DAR) of 2-DOF BTCMFH was 
optimised by grey relational analysis (GRA) and artificial neural network (ANN). 

In recent publications, many FHs with different shapes were investigated and fabricated to replace traditional joints. 
For instance, a circular FH was proposed for the kinetostatic modelling of 3-RRR compliant mechanisms by Yong and 
Lu [1]. The FHs were used as the rotation joints for a 3-DOF parallel mechanism for smooth and high precision motion 
in micro/nanomanipulation work, presented by Tian et al. [2]. A bridge-type compliant mechanism was designed by Qi 
et al. [3]. Qiu, Yin and Xie utilised the equivalent formula and the FEM to analyse failure in Triple-LET and LET flexure 
hinges [4]. Tian et al. used the finite element method to simulate flexible V-shaped hinges and compared them with the 
theory [5]. Yang et al. used super-elastic materials for a flexure hinge, and with their numerical computations and 
experiments were able to accurately forecast the displacement, along with effectively reducing the computation cost more 
than FEA by ANSYS [6]. Dao and Huang designed and optimised compliant mechanisms [7-12]. The Euler-Bernoulli 
beam theory was utilised to estimate the magnification ratio of compliant mechanisms by Xu and Li [13]. The effects of 
load on the magnification of compliant mechanisms were analysed and discussed by Liu and Yan [14]. Two FH compliant 
mechanisms were designed and fabricated by Ling et al. [15]. A bridge-type, fully compliant mechanism was proposed 
by Choi et al. [16], with outcomes confirmed by test and prior to publication. Ma et al. indicated that the magnification 
ratio has significantly influenced by the thickness of a flexure hinge [17]. Ling et al. [18] analysed and designed many 
kinds of FH.  

In 2018, Ling et al. established a semi-analytical finite element model of complex compliant mechanisms using 
Lagrange’s equation [19]. Sabri et al. performed an experiment to measure the displacement of silicon XY-microstages 
[20]. A new pseudo-rigid-body model of a flexure hinge was proposed by Šalinic et al. [21]. The principle of virtual work 
yielded a matrix relationship which was used to determine the quasi-static responses of a compliant mechanism due to 
external loads. Lai et al. used two L-shape lever-type mechanisms and one bridge-type mechanism to eliminate the 
bending moment and lateral forces [22]. The stiffness matrix method was applied to estimate the magnification ratio, and 
it was confirmed by FEM and experimentation. To meet essential needs such as large magnification, high rigidity, high-
accuracy positioning and precision tracking, Wang and Zhang designed a compact planar three-degrees of freedom nano-
positioning platform, in which, three two-level lever amplifiers were arranged symmetrically to obtain a larger 
magnification [23]. The kinematic and dynamic modelling precision was enhanced by the compensation afforded by the 
three displacement loss models and was determined by experimentation. The paper presents a design, and optimises the 
effects of design variables on DAR of a 2-DOF BTCMFH by using Grey relational analysis and artificial neural network 
based on the FEM in ANSYS software. 

ABSTRACT – The investigation proposed a hybrid Grey-artificial neural network to optimise the 
design parameters of a two degree of freedom (2-DOF) bridge-type compliant mechanism flexure 
hinge (BTCMFH). The design variables play a vital role in determining the deformation and stress 
of the mechanism. The investigation is different from the previous studies where the hybrid method 
is a combination of grey relational analysis and artificial neural network based on finite element 
method (FEM) in ANSYS to maximise output displacement (DI) and minimise the stress (ST) of the 
mechanism. The simulation and ANOVA results identified the design variables have significantly 
affected the output displacement and stress by their contribution. The grey relational analysis and 
artificial neural network predicted values are in agreement with the simulation results at optimal 
combination parameters with a deviation error displacement and stress being 0.57% and 2.1%, 
respectively. The optimal combination parameters with a deviation error of displacement and stress 
of 0.52% and 2.1%, respectively. The optimal values of DI and ST were obtained as 0.957 mm and 
104.74 MPa, respectively. The optimal value of displacement amplification ratio gained is 95.7.     
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DESIGN MODEL AND ANALYSIS METHOD 
The studied mechanisms have a total dimension of 70 mm length and 80 mm width and 10 mm thickness (see Figure 

1). The design dimensions of the studied model are depicted in Figure 2. The design variables of the studied mechanism 
consist of input body length, the thickness of FH, incline angle between two FHs, and the width of FH. 

 

  
(a) 3D model (b) 2D model 

Figure 1. 2-DOF of a bridge-type compliant mechanism flexure hinge. 

 

Figure 2. Bridge-type compliant mechanism flexure hinge in (a) 3D, (b) 2D and (c) zoom in medium body  
and two FHs. 

Table 1. Material mechanical properties. 

Material Young’s modulus (GPa) Poisson’s ratio Yield (MPa) 
Aluminium 72 0.33 503 

 
The model was designed by Solidworks and was inserted into a Static structural model of ANSYS. The AL-7075 

aluminium was selected for the investigation with the parameters shown in Table 1. The mesh in the model was meshed 
by an automatic method. It is patch conforming in ANSYS, as illustrated in Figure 3(a) with 130524 nodes and 73352 
kind of element is tetrahedron elements, respectively. The boundary conditions applied to the model are pointed out in 
Figure 3(b) with 0.01 displacement. 
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(a) (b) 

Figure 3. (a) The meshing model and (b) input boundary condition for the model. 

OPTIMISATION METHODOLOGY 
Grey Relational Analysis 

Normalisation: Rewriting each sequence between 0 and 1 as follows [24-29]. The larger, the better for the mathematical 
formula: 
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Grey relational coefficient (GRC) : A quantification method in the grey relational space. GRC is required before 

solving for the grey relational grade (GRG). The formula of deviation is calculated as follows: 
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Calculating the grey relational coefficient (GRC), 
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Here,  is the distinguishing coefficient, usually 0.5. By calculating the grey relational grade (GRG) and 

determine the weight, 
 

1)1()1(.)( −−+−= xexxexxeω  (7) 
 

where )(xeω is the mapping function in the entropy measurement. This function obtains the maximum value when 

x =0.5 and 15.0 −e =0.6487, and the mapping value in [0, 1] is obtained as follows: 
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where )}.(...,),2(),1({ niii γγγ∈=  Note that ni ...,,2,1= . Determining the total of the grey relational coefficient, 
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Determining the entropy, 
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Here, ( )xeω uses Eq. (10). Computing the total of entropy: 
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Determining the weight: 
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GRG  is the average value of GRC as follows: 
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Creating the table and response graph of GRG and analysing regression and analysis of variance of GRG. Predicting 

the output characteristics and GRG: output the acceleration, contact force and GRG can be estimated as: 
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where Dµ  and σµ are the forecasted average values of the DI and ST, respectively; mD  and 0D are the total of average 
values at the optimum level, and the average value of  DI, respectively; mσ  and 0σ are the total of average values at 
optimum level and the average value of ST; Gµ  

is the forecasted value of GRG; mG is the average value of GRG at 

)( iψ



 Ngoc Thai Huynh & Quoc Manh Nguyen │ International Journal of Automotive and Mechanical Engineering │ Vol. 18, Issue 1 (2021) 

8509   journal.ump.edu.my/ijame ◄ 

optimum value; 0G is the average value of GRG. The (CI) value was estimated at a 95% confidence level as in the 
following [30]: 

 
1 1(1, ) ( )CE e
eff e

CI F fe V
n Rα= ± +  (18)  

Artificial Neural Network 
This study used three layers, the input layer with five input parameters, the hidden layer with eleven neurons, and one 

output layer with one output neuron. The network is trained using the Levenberg-Marquardt hybrid (trainlm) [25, 31-33]. 
The structure of the artificial neural network is presented in Figure 3 and Figure 4. The input body length, incline angle, 
thickness, fillet radius and width of the FH were taken to be the input factors, and displacement or stress was taken as the 
output factors. The simulation values in Table 3 were utilised for training purposes. The simulation values in Tables 8 
and 9 were utilised for testing purposes. 
 

 
 

Figure 4. Structure of the ANN model in MATLAB with 5 input parameters, 11 neurons in the hidden layer and one 
output parameter. 

 
Figure 5. ANN training. 

Statistical Analysis 
The precision model is assessed by means of four error standards, as follows [34]. 
i. The root mean squared error (RMSE) is the difference between forecast values and the simulation values or 

observed actual values: 
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ii. The mean square error (MSE) is the square value of the root mean square: 
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iii. The mean absolute percentage error (MAPE): 
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iv. The coefficient of determination (R2) must be at least 0.8 for forecast models to be accepted:  
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where m is the number of simulation of experiments, xi and yi represent the simulation and predicting value, 

respectively, and y is the mean simulation value. 

RESULTS AND DISCUSSION 
Design Simulation 

The design variables consist of five variables with three levels as presented in Table 2, which are: variable x changes 
of 5 mm, 10 mm and 15 mm, variable y changes of 0.25 mm, 0.5 mm and 0.75 mm, variable z changes of 0.8º, 1.2º, 1.6º, 
and WOFH changes of 2 mm, 4 mm and 6 mm. The orthogonal array and output deformation and stress, as listed in Table 
3, were used to determine optimal values of DI and ST by Grey relational analysis and artificial neural network. 

Table 2. Variables and values of variables. 

Factor  Unit Levels  
 1 2 3 

Input body length  x mm 5 10 15 
TOFH y mm 0.25 0.5 0.75 
Incline angle z degree  0.8 1.2 1.6 
Fillet radius  t mm 0.0 0.2 0.4 
WOFH w mm 2 4 6 

Table 3. Orthogonal arrays, displacement and stress. 

Trial No. x y z t w Output displacement (mm) Output stress (MPa) 
1 5 0.25 0 0.8 2 0.90249 102.24 
2 5 0.25 0.2 1.2 4 0.81073 98.789 
3 5 0.25 0.4 1.6 6 0.70507 95.048 
4 5 0.5 0 1.2 6 0.29433 80.808 
5 5 0.5 0.2 1.6 2 0.41599 104.45 
6 5 0.5 0.4 0.8 4 0.24688 80.995 
7 5 0.75 0 1.6 4 0.18952 77.99 
8 5 0.75 0.2 0.8 6 0.10081 89.578 
9 5 0.75 0.4 1.2 2 0.18717 86.366 
10 10 0.25 0 0.8 2 0.93349 100.77 
11 10 0.25 0.2 1.2 4 0.84677 92.266 
12 10 0.25 0.4 1.6 6 0.73869 90.243 
13 10 0.5 0 1.2 6 0.34982 92.694 
14 10 0.5 0.2 1.6 2 0.44157 111.12 
15 10 0.5 0.4 0.8 4 0.28695 94.052 
16 10 0.75 0 1.6 4 0.2236 93.235 
17 10 0.75 0.2 0.8 6 0.12594 105.01 
18 10 0.75 0.4 1.2 2 0.2095 98.191 
19 15 0.25 0 0.8 2 0.95698 105.74 
20 15 0.25 0.2 1.2 4 0.87465 95.132 
21 15 0.25 0.4 1.6 6 0.76453 90.978 
22 15 0.5 0 1.2 6 0.40407 106.8 
23 15 0.5 0.2 1.6 2 0.46214 112.11 
24 15 0.5 0.4 0.8 4 0.32527 110.48 
25 15 0.75 0 1.6 4 0.25742 102.69 
26 15 0.75 0.2 0.8 6 0.15518 93.71 
27 15 0.75 0.4 1.2 2 0.22986 98.04 

Influence of Variable y 
The outcome of direction deformation (X-axis) and (Y-axis), as depicted in Figure 6, changed from 0.61 mm to 0.138 

mm as variable y changes from 0.25 mm to 0.75 mm with input DI of 0.01 according to X-axis and Y-axis direction (with 
variable x of 5 mm, and variable z of 0.8º, variable w of 2 mm, and variable t of 0 mm). The analysis from FEM outcomes 
are larger than the references [1-4, 6]. The values of ST change from 120 MPa to 84.46 MPa, as seen in Figure 7. The 
result proved that two outputs had significantly influenced variable y. 
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(a) y = 0.25 mm  (b) y = 0.5 mm  (c) y = 0.75 mm  
   

(d) y =  0.25 mm  (e) y = 0.5 mm  (f) y = 0.75 mm  

Figure 6. FEM outcomes of the  x-direction (a), (b), (c), and y-direction (d), (e), (f) DI with variable y.   

(a) y = 0.25 mm  (b) y = 0.5 mm  (c) y = 0.75 mm  

Figure 7. FEM outcomes of stress with different variable y. 

(a) w = 2 mm  (b) w = 4 mm  (c) w = 6 mm  

(d) w = 2 mm  (e) w = 4 mm  (f) w = 6 mm  

Figure 8. FEM outcomes of the x-direction (a), (b), (c), and y-direction (d), (e), (f) DI with different variable w. 
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(a) w = 2 mm  (b) w = 4 mm  (c) w = 6 mm  

Figure 9. FEM outcomes of ST with different variable w. 

Influence of Variable w 
Variable w increases from 2 mm to 6 mm when x direction DI and y direction DI reduced from 0.254 mm to 0.23 mm 

as illustrated in Figure 8(a) and 8(b), and equivalent stress reduced from 130.87 MPa to 127.53 MPa as depicted in Figure 
9. The results are better than the results presented in references [1-4, 6]. 

Influence of Variable x  
The phenomenon indicated that variable x has been slightly influenced by DI and ST, because the direction 

deformation (in X-axis and Y-axis) changes from 0.643 mm to 0.682 mm, as depicted in Figure 10. The outcome of ST 
changes from 102.24 MPa to 109.4 MPa, as shown in Figure 11. While input DI of 0.01 mm, variable x changes from 5 
mm to 15 mm, variable y of 0.25 mm, variable w of 2mm, variable t of 0 mm, and variable z of 0.8º. The magnification 
ratio changes from 64.3 to 68.2. These outcomes are greater than the outcomes in the references [3, 13, 15-16, 30-32]. 

 

(a) x = 5 mm  (b) x = 10 mm  (c) x = 15mm  

(d) x = 5 mm  (e) x = 10 mm  (f) x = 15mm  

Figure 10. FEM outcomes of the x-direction (a), (b), (c), and y-direction (d), (e), (f) DI with different variable x. 

(a) x = 5 mm  (b) x = 10 mm  (c) x = 15mm  

Figure 11. FEM outcomes of ST with different variable x. 
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Analysis of Variance (ANOVA) 
Table 4 indicated a total contribution percent of all factors to be 99.81%, with 0.19% error. It has also been identified 

that design dimensions have significantly been affected on the output DI among them 1.15% x, 93.02% y, 1.34% z, and 
0.91% t. The F-values are larger than 2, P-values are less than 0.05, which also confirmed this result. Similarly, Table 5 
also pointed out a total contribution percent is 99.81% with 0.67% error, as confirmed by the F-values and P-values. 

Table 4. ANOVA for displacement. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 
x 2 0.01360 1.15% 0.01360 0.006801 47.68 0.000 
y 2 1.09581 93.02% 1.09581 0.547905 3841.66 0.000 
z 2 0.01581 1.34% 0.01581 0.007905 55.42 0.000 
t 2 0.01070 0.91% 0.01070 0.005351 37.52 0.000 
w 2 0.03982 3.38% 0.03982 0.019909 139.59 0.000 
Error 16 0.00228 0.19% 0.00228 0.000143   

Total 26 1.17802 100.00%     
R-square = 99.81%, R-square(adj) = 99.69, R-square(pred) = 99.45% 

Table 5. ANOVA for stress. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 
x 2 559.07 25.53% 559.07 279.534 76.76 0.001 
y 2 132.07 6.03% 132.07 66.033 18.13 0.010 
z 2 193.30 8.83% 193.30 96.650 26.54 0.005 
t 2 73.03 3.34% 73.03 36.516 10.03 0.028 
w 2 403.23 18.42% 403.23 201.616 55.36 0.001 
x*y 4 517.12 23.62% 517.12 129.280 35.50 0.002 
x*z 4 201.12 9.18% 201.12 50.279 13.81 0.013 
x*w 4 96.16 4.39% 96.16 24.041 6.60 0.047 
Error 4 14.57 0.67% 14.57 3.642   

Total 26 2189.66 100.00%     
R-square = 99.33%, R-square(adj) = 95.68, R-square(pred) = 69.69% 

Regression Analysis  
The regression equations (RE) for DI and ST were obtained by using Minitab 18 and presented in Eq. (23) and (24). 

The RE results were compared with simulation results and as presented in Figure 12(a) and 12(b) for DI and stress graph, 
respectively. The graphs identified that the simulation values and predicted values are close to one another, in which case 
the RE of stress have an error larger than the RE of DI. 

Regression equation of DI: 
 

21.6982 0.006412 3.753 0.2272 0.02285 0.03058 2.452DI x y z t w y= + − − + − +  (23) 
 
Regression equation for stress: 
 

2 2 2

2 2

(12.11 0.0214x 1.13y 2.51z 2.61t 0.522w 3.01y 6.91z 1.071t
0.0523w 0.1568xy)

Stress = − + + − − − − +

+ +
 (24) 

Grey Relational Analysis 
Equation (1) and (2) were applied for output DI and output ST. The deviation value was determined through Eq. 

(3). The minimum and maximum value of the deviation value was calculated by Eq. (4) and Eq. (5). The GRC value 
obtained by Eq. (6). The GRG value was achieved by Eq. (14) and the values are presented in Table 6. The weight of the 
two output characteristics was determined by Eq. (13).  
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(a) DI 

 
 
 

(b) ST 

Figure 12. Comparison of simulation and the predicted values for the regression equation. 

Table 6. The greater and the lesser are the better for displacement and stress, GRC, GRG and rank of GRG. 

No. *
iD (1) *

iD (2) Δoi(1) Δoi(2) γi(1) γi(2) ψi Rank 
1 0.9364 0.2893 0.0636 0.7107 0.8872 0.413 0.6509 6 
2 0.8292 0.3904 0.1708 0.6096 0.7454 0.4506 0.5985 11 
3 0.7058 0.5001 0.2942 0.4999 0.6296 0.5001 0.5651 12 
4 0.226 0.9174 0.774 0.0826 0.3925 0.8582 0.6246 8 
5 0.3681 0.2245 0.6319 0.7755 0.4417 0.392 0.4169 19 
6 0.1706 0.9119 0.8294 0.0881 0.3761 0.8502 0.6123 10 
7 0.1036 1 0.8964 0 0.3581 1 0.678 3 
8 0 0.6604 1 0.3396 0.3333 0.5955 0.464 15 
9 0.1009 0.7545 0.8991 0.2455 0.3574 0.6707 0.5135 13 
10 0.9726 0.3324 0.0274 0.6676 0.948 0.4282 0.689 2 
11 0.8713 0.5816 0.1287 0.4184 0.7953 0.5444 0.6703 4 
12 0.745 0.6409 0.255 0.3591 0.6623 0.582 0.6223 9 
13 0.2908 0.5691 0.7092 0.4309 0.4135 0.5371 0.4751 14 
14 0.398 0.029 0.602 0.971 0.4537 0.3399 0.397 24 
15 0.2174 0.5292 0.7826 0.4708 0.3898 0.515 0.4522 16 
16 0.1434 0.5532 0.8566 0.4468 0.3686 0.5281 0.4481 17 
17 0.0294 0.2081 0.9706 0.7919 0.34 0.387 0.3634 27 
18 0.1269 0.4079 0.8731 0.5921 0.3641 0.4578 0.4108 21 
19 1 0.1867 0 0.8133 1 0.3807 0.6914 1 
20 0.9038 0.4976 0.0962 0.5024 0.8386 0.4988 0.6693 5 
21 0.7752 0.6193 0.2248 0.3807 0.6898 0.5677 0.629 7 
22 0.3542 0.1556 0.6458 0.8444 0.4364 0.3719 0.4043 22 
23 0.422 0 0.578 1 0.4638 0.3333 0.3988 23 
24 0.2622 0.0478 0.7378 0.9522 0.4039 0.3443 0.3742 26 
25 0.1829 0.2761 0.8171 0.7239 0.3796 0.4085 0.394 25 
26 0.0635 0.5393 0.9365 0.4607 0.3481 0.5205 0.434 18 
27 0.1507 0.4124 0.8493 0.5876 0.3706 0.4597 0.415 20 
 
The graph of the GRG value was drawn out in Figure 13. The graph of the GRG mean values of the two output 

characteristics, as presented in Figure 14 indicated the high peak of the variable reached the optimum level. Therefore, 
the combination variables at the optimum level are x3y1z1t1w1. 
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Table 7. ANOVA for GRG. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 
x 2 0.012299 8.44% 0.012299 0.006150 66.65 0.001 
y 2 0.083181 57.05% 0.083181 0.041590 450.78 0.000 
z 2 0.009508 6.52% 0.009508 0.004754 51.53 0.001 
t 2 0.000843 0.58% 0.000843 0.000422 4.57 0.093 
w 2 0.004021 2.76% 0.004021 0.002010 21.79 0.007 
x*y 4 0.021285 14.60% 0.021285 0.005321 57.67 0.001 
x*z 4 0.009705 6.66% 0.009705 0.002426 26.30 0.004 
x*w 4 0.004595 3.15% 0.004595 0.001149 12.45 0.016 
Error 4 0.000369 0.25% 0.000369 0.000092   

Total 26 0.145807 100.00%     
R-sqaure = 99.75%, R-square(adj), R-square(pred)=88.47% 

 

 
 

Figure 13. Plot for GRG. 

 
 

Figure 14. Response graph of GRG. 

Regression Equation for GRG 
The RE for GRG was achieved by Minitab 18 and written in Eq. (25) and the graph was drawn in Figure 15. It is 

identified that the values of GRG are closed to the straight line with deviation error in the interval (-0.05,0.05). 
 

 
Figure 15. Residual plot for GRG. 
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The Outcomes of Artificial Neural Network Analysis 
The training results are illustrated in Figure 15 to Figure 17, so that the performance plots indicated that the best 

validation performance is 1.27×10-7, at epoch 0. The gradient, mu and validation checks are equal to 0.000108, 10-6, 6 at 
epoch 6, respectively. The graphs, as pointed out in Figure 16, compared the simulation results and the predicted values 
of ANN for GRG. The graphs lie near to the straight line. The training, validation, test and remainder are all are equal to 
0.9993, 1, 1 1nd 0.9994, respectively. The training and simulation result and error are listed in Table 8. 
 

   
(a)                 (b) 

Figure 16. The results of ANN: (a) performance plot, and (b) training state of ANN for GRG. 

The testing and simulation result and error are listed in Table 9. The graph compared the training, therefore testing 
with simulation results as demonstrated in Figure 18(a) and 18(b). The graphs lie very close to each other. The statistical 
analysis results, as presented in Table 10, pointed out that RE and ANN was acceptable to optimise the design compliant 
mechanism. Because R2 is larger than 94%, MSE is less than 0.0007, RMSE is less than 0.03 and MAPE is less than 5%. 

 

 
(a)          (b) 

 

 
(c)          (d) 

Figure 17. Relationship between simulation values and ANN of GRG. 
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Table 8. Design variable, simulation outcomes, training results and error of GRG. 

Trial No. x y z t w GRG simulation GRG predicted 
1 5 0.25 0 0.8 2 0.6509 0.6601 
2 5 0.25 0.2 1.2 4 0.5985 0.5984 
3 5 0.25 0.4 1.6 6 0.5651 0.5699 
4 5 0.5 0 1.2 6 0.6246 0.6246 
5 5 0.5 0.2 1.6 2 0.4169 0.4147 
6 5 0.5 0.4 0.8 4 0.6123 0.6120 
7 5 0.75 0 1.6 4 0.678 0.6779 
8 5 0.75 0.2 0.8 6 0.464 0.4640 
9 5 0.75 0.4 1.2 2 0.5135 0.5137 
10 10 0.25 0 0.8 2 0.689 0.6895 
11 10 0.25 0.2 1.2 4 0.6703 0.6911 
12 10 0.25 0.4 1.6 6 0.6223 0.6223 
13 10 0.5 0 1.2 6 0.4751 0.4751 
14 10 0.5 0.2 1.6 2 0.3970 0.3970 
15 10 0.5 0.4 0.8 4 0.4522 0.4522 
16 10 0.75 0 1.6 4 0.4481 0.4481 
17 10 0.75 0.2 0.8 6 0.3634 0.3635 
18 10 0.75 0.4 1.2 2 0.4108 0.4108 
19 15 0.25 0 0.8 2 0.6914 0.6914 
20 15 0.25 0.2 1.2 4 0.6693 0.6692 
21 15 0.25 0.4 1.6 6 0.629 0.6291 
22 15 0.5 0 1.2 6 0.4043 0.4042 
23 15 0.5 0.2 1.6 2 0.3988 0.3987 
4 15 0.5 0.4 0.8 4 0.3742 0.3741 
25 15 0.75 0 1.6 4 0.394 0.3941 
26 15 0.75 0.2 0.8 6 0.434 0.4340 
27 15 0.75 0.4 1.2 2 0.415 0.4150 

Table 9. Design variables, simulation, testing outcomes GRG. 

Trial No. x y z t w GRG Simulation GRG Predicted 
1 5 0.25 0 0.8 2 0.6509 0.66014 
2 5 0.25 0.2 1.2 4 0.5985 0.59849 
3 5 0.25 0.4 1.6 6 0.5651 0.56579 
4 10 0.5 0 1.2 6 0.4751 0.4751 
5 10 0.5 0.2 1.6 2 0.397 0.397 
6 10 0.5 0.4 0.8 4 0.4522 0.4522 
7 15 0.75 0 1.6 4 0.394 0.3941 
8 15 0.75 0.2 0.8 6 0.434 0.434 
9 15 0.75 0.4 1.2 2 0.415 0.415 

Table 10. Statistical analysis results for predicted models. 

Criteria 
Predicted models 

Regression equation of GRG ANN of GRG 
Training Testing Training Testing 

R2 (%) 94.91 99.62 99.85 99.88 
MSE 0.000671 0.00025 0.000019 0.00001 
RMSE 0.025907 0.01602 0.0044 0.00178 
MAPE (%) 4.48 1.67 0.2 0.06 
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(a) 

 
 

(b) 

Figure 18. The (a) training and (b) testing graph of GRG simulation compare with GRG predicted ANN. 

The Outcome of Predicted Optimisation 
The optimum values of the DI, the ST, and GRG gained 0.95698 mm, 105.74 MPa, and 0.6914, respectively. The 

predicted values for the output DI and the output ST and the GRG obtained by Eq. (15) to (17) and values, as depicted in 
Table 11 are 0.9625 mm, 108.0036 MPa, and 0.7661, respectively. The results are in agreement with the deviation of DI, 
ST, and GRG; and, they are 0.57%, 2.1% and 9.75%, respectively, as written in Table 11 and Table 12. 

Table 11. Response table of average of DI, ST and GRG. 

Response Level x y z t w 

DI 

1 0.4281 0.8370 0.5013 0.4482 0.5266 
2 0.4618 0.3586 0.4704 0.4674 0.4513 
3 0.4922 0.1866 0.4104 0.4665 0.4043 

Delta 0.0641 0.6505 0.0909 0.0192 0.1223 
Rank 4 1 3 5 2 

ST 

1 90.700 96.690 94.890 95.730 100.450 
2 94.950 96.500 97.570 94.230 92.070 
3 99.520 91.980 92.710 95.210 92.650 

Delta 8.820 4.710 4.860 1.500 8.380 
Rank 1 4 3 5 2 

GRG 

1 0.490 0.643 0.562 0.531 0.544 
2 0.503 0.461 0.490 0.526 0.509 
3 0.569 0.458 0.511 0.505 0.509 

Delta 0.079 0.185 0.072 0.026 0.035 
Rank 2 1 3 5 4 

 
First, the average values of the displacement and stress were presented in Tables 4 and 5, respectively. Second, µD 

and µσ were achieved by Eq. (15), Eq. (16) and are shown in Table 6 and Table 7. The total average values of displacement 
and stress are equal to 0.4607 mm and 96.6491 MPa, µD and µσ were determined, as follows: 

 
q

D m 0 M
i=1

μ = D + (D - D ) = x3 + y1+ z1+ t1+ w1 = 0.49922 + 0.837 + 05013 + 04482 + 0.566 - 4*0.4607

= 0.9625(mm)

∑  
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q

D m 0 M
i=1

= s + ( - ) = x3 + y1+ z1+ t1+ w1 = 101.74 + 96.8 + 95.89 + 98.06 +102.11- 4*96.6491

= 108.0036) (MPa)

σ σ σ∑  

 
At 95% confidence interval to confirm (CI) was gained utilising Eq. (18), Table 4, Table 5 and Table 7. 
 
i. For DI, at α=0.05, fe =16, F0.05(1,16) = 4.494 [30], Ve =0.001265, R = 10, Re = 1, n = 27. 

 

14.494 0.000143 ( 1) 0.03
27

1 10

= ± × × + = ±

+

CICE
 0.9325 0.9925confirmationµ< <  

 

ii. For ST, at α=0.05, fe =4, F0.05(1,4) = 7.7086 [30], Ve =3.642, R = 22, Re = 1, n = 27 

 

17.7086 3.642 ( 1) 7.21
27

1 22

= ± × × + = ±

+

CICE
 100.7936 115.2136confirmationµ< <  

 

iii. For GRG, at α=0.05, fe =4, F0.05(1,4) = 7.7086 [30], Ve =0.000092, R = 22, Re = 1, n = 27 

 

17.7086 0.000092 ( 1) 0.03624
27

1 22

= ± × × + = ±

+

CICE
 0.72986 0.80234confirmationµ< <  

The compared results predicted values with optimal GRG values of the methods, as shown in Table 12. Results 
identified that the methods are in agreement with a deviation error of 9.75% for GRA, 6.47% for RE, and 6.22% for ANN. 
The compared results between the predicted and optimal DI values of methods demonstrated that the method is in 
agreement with a deviation of 6.86% for the Taguchi method, 0.0034% for RE, 0.57% for GRA, and 0.52% for ANN. 
The compared results between the predicted and optimal ST values of methods demonstrated that the method is in 
agreement with a deviation of 8.41% for the Taguchi method, 3.67% for RE, and 2.1% for both GRA and ANN. 

Table 12. Comparison of the predicted and optimal GRG and DI values. 

Response  Optimal combination GRA Regression ANN 

GRG 
Predicted 

x3y1z1t1w1 
0.7661 0.6292 0.6484 

Optimal 0.6914 0.6727 0.6914 
Error (%) 9.75 6.47 6.22 

DI 
Predicted 

x3y1z1t1w1 
0.9625 0.984813 0.9625 

Optimal 0.95698 0.98478 0.96245 
Error (%) 0.57 0.0034 0.52 

ST Predicted 
x3y1z1t1w1 

108.0036 108.0615 108.0036 
Optimal 105.74 104.0876 105.74 

Error (%) 2.1 3.67 2.1 
 
The optimum model obtained by using the regression equation, GRA and ANN is x3y1z1t1w1 which was utilised to 

analyse DI and ST in a static structure in ANSYS. The outcomes indicated that DI and ST were approximated using the 
optimal results. The outcomes are also compared with the kind of finite element tetrahedron and hexagon, as depicted in 
Figure 19.  
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(a) The outcome of DI - mesh divided with tetrahedron 

elements 
(b) The outcome of ST - mesh divided with tetrahedron 

elements 
 

 
 

(c) The outcome of DI - mesh divided with hexagon 
element 

(d) The outcome of ST - mesh divided with hexagon 
elements 

Figure 19. The optimal results with different kinds of finite element. 

CONCLUSION 
The investigation proved the influence of design variables on the magnification ratio of 2-DOF BTCMFH by ANSYS. 

The FEM outcomes indicated variable y significantly influenced the magnification and stress, and the remaining variables 
have slightly influenced. The outcomes proved the studied mechanism has more advantage than the previous publication. 
It indicated that the studying mechanism has a magnification ratio greater than what is found in some previous 
publications. Moreover, the FEM outcomes are all confirmed by means of ANOVA, regression analysis, surface plot, 
GRA and ANN. The optimum outcomes proved that the design variables have a significant effect on magnification ratio 
and stress. In rank order, the first is variable y, second is variable w, third is variable z, fourth is variable x, and the final 
is variable t. The optimum values of displacement and the stress obtained are 0.9570 mm and 105.74 MPa, respectively. 
The amplification ratio x- and y-axis direction achieved 67.7 times. The forecasted values of DI and ST achieved 0.9625 
mm and 108.0036 MPa, respectively. The amplification of both the x- and y-axis direction ratio achieved 68.06, with the 
outcomes, error between forecasted, and optimum values of displacement and stress being 0.57% and 2.1%, respectively. 



 Ngoc Thai Huynh & Quoc Manh Nguyen │ International Journal of Automotive and Mechanical Engineering │ Vol. 18, Issue 1 (2021) 

8521   journal.ump.edu.my/ijame ◄ 

ACKNOWLEDGEMENT 
This research was supported by Hung Yen University of Technology and Education and Industrial University of Ho 

Chi Minh City. 

REFERENCES 
 
[1] Yong YK, Lu TF. Kinetostatic modeling of 3-RRR compliant micro-motion stages with flexure hinges. Mechanism and 

Machine Theory, 2009. 44(6): 1156-1175. 
[2] Tian Y, Shirinzadeh B, Zhang D. Design and dynamics of a 3-DOF flexure-based parallel mechanism for micro/nano 

manipulation. Microelectronic Engineering, 2010. 87(2): 230-241. 
[3] Qi KQ, Xiang Y, Fang C, Zhang Y, Yu CS. Analysis of the displacement amplification ratio of bridge-type mechanism. 

Mechanism and Machine Theory, 2015. 87: 45-56. 
[4] Qiu L, Yin S, Xie Z, Failure analysis and performance comparison of Triple-LET and LET flexure hinges. Engineering Failure 

Analysis, 2016. 66: 35-43. 
[5] Tian Y, Shirinzadeh B, Zhang D. Closed-form compliance equations of filleted V-shaped flexure hinges for compliant 

mechanism design. Precision Engineering, 2010. 34(3): 408-418. 
[6] Yang M, Du Z, Dong W. Modeling and analysis of planar symmetric super-elastic flexure hinges. Precision Engineering, 2016. 

46: 177-183. 
[7] Dao TP. Multiresponse Optimization of a Compliant Guiding Mechanism Using Hybrid Taguchi-Grey Based Fuzzy Logic 

Approach. Mathematical Problems in Engineering, 2016. 2016: 1-17. 
[8] Dao TP, Huang SC. Robust design for a flexible bearing with 1-DOF translation using the Taguchi method and the utility 

concept. Journal of Mechanical Science and Technology, 2015. 29(8): 3309-3320. 
[9] Dao TP, Huang SC. Design and analysis of a compliant micro-positioning platform with embedded strain gauges and 

viscoelastic damper. Microsystem Technologies, 2016. 23(2): 441-456. 
[10] Dao TP, Huang SC. Optimisation of a two degrees of freedom compliant mechanism using Taguchi method-based grey 

relational analysis. Microsystem Technologies, 2017. 23(10): 4815-4830. 
[11] Dao TP, Huang SC. Design and multi-objective optimisation for a broad self-amplified 2-DOF monolithic mechanism. 

Sādhanā, 2017. 42(9): 1527-1542. 
[12] Dao TP, Huang SC. Compliant thin-walled joint based on zygoptera nonlinear geometry. Journal of Mechanical Science and 

Technology, 2017. 31(3): 1293-1303. 
[13] Xu Q, Li Y. Analytical modeling, optimisation and testing of a compound bridge-type compliant displacement amplifier. 

Mechanism and Machine Theory, 2011. 46(2): 183-200. 
[14] Liu P, Yan P. A new model analysis approach for bridge-type amplifiers supporting nano-stage design. Mechanism and 

Machine Theory, 2016. 99: 176-188. 
[15] Ling M, Cao J, Zeng M, Lin J, Inman DJ. Enhanced mathematical modeling of the displacement amplification ratio for 

piezoelectric compliant mechanisms. Smart Materials and Structures, 2016. 25(7): 075022. 
[16] Choi KB, Lee JJ, Kim GH, Lim HJ, Kwon SG. Amplification ratio analysis of a bridge-type mechanical amplification 

mechanism based on a fully compliant model. Mechanism and Machine Theory, 2018. 121: 355-372. 
[17] Ma HW, Yao SM, Wang LQ, Zhong Z. Analysis of the displacement amplification ratio of bridge-type flexure hinge. Sensors 

and Actuators A: Physical, 2006. 132(2): 730-736. 
[18] Ling M, Cao J, Jiang Z, Lin J. Modular kinematics and statics modeling for precision positioning stage. Mechanism and 

Machine Theory, 2017. 107: 274-282. 
[19] Ling M, Cao J, Jiang Z, Lin J. A semi-analytical modeling method for the static and dynamic analysis of complex compliant 

mechanism. Precision Engineering, 2018. 52: 64-72. 
[20] Sabri MFM, Ono T, Esashi M. Modeling and experimental validation of the performance of a silicon XY-microstage driven 

by PZT actuators. Journal of Micromechanics and Microengineering, 2009. 19(9): 095004. 
[21] Šalinić S, Nikolić A. A new pseudo-rigid-body model approach for modeling the quasi-static response of planar flexure-hinge 

mechanisms. Mechanism and Machine Theory, 2018. 124: 150-161. 
[22] Lai LJ, Zhu ZN. Design, modeling and testing of a novel flexure-based displacement amplification mechanism. Sensors and 

Actuators A: Physical, 2017. 266: 122-129. 
[23] Wang R, Zhang ZN. A planar 3-DOF nano-positioning platform with large magnification. Precision Engineering, 2016. 46: 

221-231. 
[24] Kumar S, Meenu, Investigation of surface roughness and material removal rate for UD-GFRP composite using Taguchi grey 

relational analysis. International Journal of Automotive and Mechanical Engineering, 2017. 14(2): 4298-4314. 
[25] Panda A, Sahoo AK, Panigrahi I, Rout AK. Investigating Machinability in Hard Turning of AISI 52100 Bearing Steel Through 

Performance Measurement: QR, ANN and GRA Study. International Journal of Automotive and Mechanical Engineering, 
2018. 15(1): 4935-4961. 



 Ngoc Thai Huynh & Quoc Manh Nguyen │ International Journal of Automotive and Mechanical Engineering │ Vol. 18, Issue 1 (2021) 

8522   journal.ump.edu.my/ijame ◄ 

[26] Abu MY, Jamaluddin KR, Zakaria MA. Classification of crankshaft remanufacturing using Mahalanobis-Taguchi system. 
International Journal of Automotive and Mechanical Engineering, 2016. 13(2): 3413-3422. 

[27] Rao VR, Ramanaiah N, Rao MS, Sarcar MMM, Kartheek G. Optimisation of process parameters for minimum volumetric 
wear rate on AA7075-TiC metal matrix composite. International Journal of Automotive and Mechanical Engineering, 2016. 
13(3): 3669-3680. 

[28] Huynh NT, Huang SC, Dao TP, Optimal displacement amplification ratio of bridge-type compliant mechanism flexure hinge 
using the Taguchi method with grey relational analysis. Microsystem Technologies, 2018: 1-15. 

[29] Huynh NT, Huang SC, Dao TP, Design variables optimisation effects on acceleration and contact force of the double sliders-
crank mechanism having multiple revolute clearance joints by use of the Taguchi method based on a grey relational analysis. 
Sādhanā, 2020. 45(1). 

[30] Roy RK. A primer on the Taguchi method, 2nd sed. Society of Manufacturing Engineers; 2010. 
[31] Kumar S, Batish A, Singh R, Singh TP. A hybrid Taguchi-artificial neural network approach to predict surface roughness 

during electric discharge machining of titanium alloys. Journal of Mechanical Science and Technology, 2014. 28(7): 2831-
2844. 

[32] Kant G, KS Sangwan. Predictive modelling and optimisation of machining parameters to minimise surface roughness using 
artificial neural network coupled with genetic algorithm. Procedia CIRP, 2015. 31: 453-458. 

[33] Sukumar MS, Ramaiah PV, Nagarjuna A. Optimization and prediction of parameters in face milling of Al-6061 using Taguchi 
and ANN approach. Procedia Engineering, 2014. 97: 365-371. 

[34] Dao TP, Huang SC. Design, fabrication, and predictive model of a 1-Dof translational flexible bearing for high precision 
mechanism. Transactions of the Canadian Society for Mechanical Engineering 2015. 39(3): 419-429. 

 

 


	INTRODUCTION
	DESIGN MODEL AND ANALYSIS METHOD
	OPTIMISATION METHODOLOGY
	Grey Relational Analysis
	Artificial Neural Network
	Statistical Analysis

	RESULTS AND DISCUSSION
	Design Simulation
	Influence of Variable y
	Influence of Variable w
	Influence of Variable x
	Analysis of Variance (ANOVA)
	Regression Analysis
	Grey Relational Analysis
	Regression Equation for GRG
	The Outcomes of Artificial Neural Network Analysis
	The Outcome of Predicted Optimisation

	(c) y = 0.75 mm 
	(b) y = 0.5 mm 
	(a) y = 0.25 mm 
	(c) w = 6 mm 
	(b) w = 4 mm 
	(a) w = 2 mm 
	(f) w = 6 mm 
	(e) w = 4 mm 
	(d) w = 2 mm 
	(c) w = 6 mm 
	(b) w = 4 mm 
	(a) w = 2 mm 
	(c) x = 15mm 
	(b) x = 10 mm 
	(a) x = 5 mm 
	(f) x = 15mm 
	(e) x = 10 mm 
	(d) x = 5 mm 
	(c) x = 15mm 
	(b) x = 10 mm 
	(a) x = 5 mm 
	CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

