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Assessment of the cortical role during bipedalism has been a methodological chal-
lenge. While surface electroencephalography (EEG) is capable of non-invasively 
measuring cortical activity during human locomotion, it is associated with movement 
artifacts obscuring cerebral sources of activity. Recently, statistical methods based 
on blind source separation revealed potential for resolving this issue, by segregating 
non-cerebral/artifactual from cerebral sources of activity. This step marked a new 
opportunity for the investigation of the brains’ role while moving and was tagged 
mobile brain/body imaging (MoBI). This methodology involves simultaneous mobile 
recording of brain activity with several other body behavioral variables (e.g., mus-
cle activity and kinematics), through wireless recording wearable devices/sensors. 
Notably, several MoBI studies using EEG–EMG approaches recently showed that the 
brain is functionally connected to the muscles and active throughout the whole gait 
cycle and, thus, rejecting the long-lasting idea of a solely spinal-driven bipedalism. 
However, MoBI and brain/muscle connectivity assessments during human locomotion 
are still in their fledgling state of investigation. Mobile brain/body imaging approaches 
hint toward promising opportunities; however, there are some remaining pitfalls that 
need to be resolved before considering their routine clinical use. This article discusses 
several of these pitfalls and proposes research to address them. Examples relate to 
the validity, reliability, and reproducibility of this method in ecologically valid scenarios 
and in different populations. Furthermore, whether brain/muscle connectivity within 
the MoBI framework represents a potential biomarker in neuromuscular syndromes 
where gait disturbances are evident (e.g., age-related sarcopenia) remains to be 
determined.

Keywords: mobile brain/body imaging, independent component analysis, corticomuscular coherence, neural drive, 
gait, electroencephalography, central pattern generators, age-related sarcopenia
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FiGUre 1 | General representation of the interplay between supraspinal 
(primary sensorimotor cortex), spinal (central pattern generators), and 
subspinal structures (e.g., ankle dorsiflexors) during locomotion. Efferent 
pathway from the primary motor cortex (M1) descends to the spinal cord to 
initiate/mediate the gait. At spinal cord level, contralateral ankle flexors and 
extensors (here represented by the tibialis anterior [F]; and Soleus [E] 
respectively) are excited/inhibited rhythmically to produce the basic 
locomotor pattern of gait. Afferent pathway (e.g., originating from the 
muscles) ascends to the spinal cord and to the contralateral primary sensory 
cortex (S1) to produce feedback corrections of the locomotor patterns.
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ceNtrAL PAtterN GeNerAtOrs (cPGs) 
Or cOrticAL MecHANisMs? A LONG-
LAstiNG (OPeN) QUestiON iN MOtOr 
cONtrOL OF GAit

Whether human locomotion is driven primarily by supraspinal 
or subcortical mechanisms within the central nervous system 
(CNS) is object of long-lasting debates. In mammalians, mus-
cle activation requires CNS inputs either dependently (1) or 
independently (2) from peripheral sensory feedback based on 
whether locomotion is actually performed or not. This finding 
is based on animal experimental data from the beginning of the 
nineteenth (3, 4) and twentieth centuries (5). These empirical 
findings forged the core of the CPGs, spinal interneuronal 
networks, theory (6). Since then and until recently, CPGs were 
considered playing the most crucial role in human locomo-
tion. Briefly, CPGs model human locomotion (i.e., walking) 
as an action initiated by the brain, but yet are maintained (and 
constrained) in its steady-state execution by mostly spinal 
mechanisms with the interaction of peripheral afferent con-
tributions (1). However, intentional gait modifications require 
motor programming in the premotor cortices (7) and, thus, 
indicate a role for supraspinal control of human walking. Here, 
we summarize recent studies on human walking showing that 
bipedalism is achieved by inputs and modifications from 
supraspinal, spinal, and peripheral structures (Figure 1). The 
corresponding contributory weights of the different structures 
that help in controlling different modes of locomotion (e.g., 
running, walking with or without cognitive dual-tasking), 
remain to be explored. Recent advances in technology lead 
to the hypothesis that the control of human bipedalism 
can be explored by applying experimental approaches that 
allow imaging of human brain dynamics in actively moving 
individuals.

A constant motor control of human bipedalism has already 
been hypothesized two centuries ago by scientists such as George 
Hayward, who wrote: “The nerves convey the stimulus of volition 
to the muscles … and the whole machine is thus put in motion 
under the guidance of the will” (8). Nevertheless, at that time such 
a theory could not be demonstrated experimentally, given that a 
device able to record brain activity was not yet available.

AssessiNG tHe BrAiN DUriNG 
MOveMeNt: OPPOrtUNities AND 
PitFALLs

Only one century later Hans Berger recorded the first electroen-
cephalography (EEG) from the human scalp (9). Since then and 
almost until the end of the 20th century, EEG has been involved in 
several studies on physiological and pathological neural mecha-
nisms, however, it was not yet usable for assessing the supraspinal 
role in human locomotion. Each EEG electrode measures electri-
cal potentials from a huge neuronal pool (e.g., from thousands of 
neurons) and this neuronal activity is spread out because of the 
volume conduction within the skull. Therefore, at the end each 
EEG electrode delivers only weak amplitudes of electrocortical 

signals which remain sensitive to electronic noise and artifacts 
(10). In fact, in the last century, a common goal of the scientific 
community in the motor control field focused only on experi-
ments regarding the relationships between human locomotion 
and cognition (11). The movement-related artifacts/noise con-
taminating the EEG recordings in motion-related experiments 
possibly explains the lack of investigations in actively walking 
participants. However, recent technological developments give 
rise to the expectation that EEG- and movement artifacts-related 
problems during human locomotion might be overcome. We will, 
therefore, briefly discuss some of these recent developments. We 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


3

Gennaro and de Bruin MoBI of Brain–Muscle Connectivity in Human Locomotion

Frontiers in Public Health | www.frontiersin.org February 2018 | Volume 6 | Article 39

refer to a comprehensive overview of the theoretical and practical 
EEG and EEG-related principles (12, 13), since this topic is out of 
the scope of this work.

The interest in the supraspinal behavior during human loco-
motion has grown in the previous few decades and several stud-
ies started using functional near infrared spectroscopy (fNIRS) 
for the assessment of functional brain activation during human 
bipedalism (14, 15). fNIRS records the concentration levels of 
oxygenated hemoglobin (O2Hb) and has the advantage of being 
less prone to movement artifacts contamination. However, 
using fNIRS in this context has some limitations as well. To 
name a few, fNIRS is not able to provide information about 
brain structure for anatomical reference, the separation of the 
hemodynamic changes originating either from cerebral tissue 
or extra-cerebral tissues/structures is difficult (16), and finally 
most fNIRS devices are composed of a few channels only (i.e., 
optodes). A multimodal approach where fNIRS and EEG are 
used in combination can be possible as well. Concurrent EEG-
fNIRS measurements can be collected with relative ease (17) and 
allow simultaneous investigation of the brain at multiple spatial 
and temporal scales (16).

Electroencephalography allows the direct measurement of 
post-synaptic neuronal activity, with very high time resolution 
but low spatial resolution. However, in recent years several 
improvements to overcome the spatial resolution limitation of 
EEG have been made. Enhanced EEG source reconstruction 
techniques (18–23) in combination with advanced statistical 
methods such as clustering of independent components (24–27) 
(see next paragraph for more details about this topic) and meas-
ure projection analysis (28) are an example. These developments 
have enhanced the achievable spatial resolution quality of EEG 
(28). Furthermore, EEG devices are available in several settings 
and with a number of channels up to 256 electrodes, which allows 
coverage of the entire human scalp.

The application of statistical methods to segregate cerebral 
and non-cerebral sources (e.g., noise, muscle activity, and eye 
blinks/movements) from the EEG recordings (29) through 
blind source separation (BSS) constitutes a major improvement 
for the assessment of brain behavior during human movement 
in ecologically valid scenarios. This BSS method, known most 
commonly as independent component analysis (ICA) (30, 31), 
has demonstrated its capability to separate overlapping and 
linearly mixed sources (both cerebral and non-cerebral) from 
the EEG recordings into mutually independent sources. That is, 
EEG recordings can be cleaned from non-cerebral components 
while preserving the cerebral ones (32, 33). This “revolution-
ary” method to clean EEG recordings from contamination of 
movement artifacts has more recently evolved in more advanced 
methods such as adaptive mixture-independent component 
analysis (34).

MOBiLe BrAiN/BODY iMAGiNG: A NeW 
PrOMisiNG reseArcH FieLD

This aforementioned development has kicked-off a new research 
field, tagged as mobile brain/body imaging (MoBI) (35, 36), that 

translationally includes both knowledge from neuroscience and 
human movement sciences. MoBI introduces novel important 
opportunities allowing the investigation of the role of the CNS 
during human bipedal motion in natural environments (37, 
38). Indeed, investigations using EEG approaches for study-
ing human locomotion behavior has more recently shown an 
exponential increase, thus, unveiling several key aspects of 
cortical driven mechanisms of motor control in several human 
locomotion behavioral tasks, spanning from walking (39–46) 
to running (47) and from dancing (48) to cycling (49, 50). Even 
complex spatial navigation tasks (51) and virtual reality-based 
gait tasks (52) have been investigated with the help of this 
technique. Newer and deeper insights from more conventional 
types of analysis have been proposed, such as studies involv-
ing cognitive tasks (i.e., dual-task walking) in human bipedal 
motion (53–55).

A MoBI set-up allows an undefined number of body sensors 
to record human movement behavior concurrently with brain 
activity (e.g., by means of EEG). That is, the essence of the MoBI 
approach would require not only a mobile brain recording 
device but also simultaneous (and thus precisely triggered in 
time) several other measurement devices, in order to explore key 
aspects of the human locomotion linked to brain behavior. An 
example of such mobile wearable body sensors could be wireless 
surface electromyography (sEMG), 3D motion capture, inertial 
measurement units (IMUs), foot plantar pressure measurement 
systems, and/or eye tracker devices. A more comprehensive read-
ing on wearable sensors options for MoBI studies can be found 
elsewhere (56).

BrAiN/MUscLe cONNectivitY iN 
HUMAN LOcOMOtiON: stANDPOiNts, 
LiMitAtiONs, AND FUtUre DirectiONs

An important step in combining EEG with wearable body sensors 
has been performed by using sEMG. A recent MoBI study firstly 
showed that the motor cortex is actively committed in driving 
human locomotion such as walking (62). This was followed by 
several other similar studies (63–66). Together these studies rep-
resented the first direct and confirmatory evidence of supraspinal 
active controlling mechanisms, showing that brain activity is not 
solely constrained to a triggering role in human bipedal locomo-
tion, but rather should be considered as being active during the 
whole motor execution phase, similar to the CPGs (67). This 
topic of investigation has been based on the assumption that the 
primary sensorimotor cortex (as assessed by means of EEG) is 
highly coupled (i.e., coherent) with muscle activity (as assessed by 
means of sEMG). That is, a measure of oscillatory synchroniza-
tion between the primary sensorimotor cortex and spinal motor 
neurons activity (indirectly measured by sEMG), representing an 
actual measure of corticospinal interactions (68, 69). Coupled 
EEG–EMG analysis is often referred to as “corticomuscular 
coherence” (CMC) and has been first introduced by Baker in 1997 
(70). CMC significant (71) values span from 0 to 1, where a higher 
number means higher coupling between EEG and EMG and, 
thus, a more efficient corticomuscular synchronization. Further 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


4

Gennaro and de Bruin MoBI of Brain–Muscle Connectivity in Human Locomotion

Frontiers in Public Health | www.frontiersin.org February 2018 | Volume 6 | Article 39

details regarding this brain/muscle connectivity measure can be 
found elsewhere (72–74).

The promising potential of using wearable sensors in 
combination with brain imaging devices, investigating the 
communication between supraspinal and subcortical sites with 
concurrent kinematic events, is shown by recent studies involv-
ing peripherally attached (i.e., to the limbs) IMUs coupled with 
magnetoencephalography. These studies have shown promising 
results in the sense that using such combined techniques (i.e., 
corticokinematic coherence, CKC) is capable to parallel CMC 
in assessing the neuronal communication between brain and 
muscle(s) (57–61). CKC is a good example of how wearable sen-
sors in combination with brain imaging devices might be used for 
the assessment of meaningful human bipedalism behavior. CKC, 
currently not yet employed within a MoBI framework, might 
represent an important opportunity for future MoBI studies aim-
ing to explore the brain–muscle communication during human 
locomotion. Indeed, IMUs are rather simple and quick to use as 
well as less prone to be contaminated by motion-related artifacts, 
compared to sEMG.

A comparable measure of CMC, referred to as “intramuscular 
coherence” or “EMG-EMG coherence”, takes into consideration 
the common synchronized oscillatory drive to a pair of sEMG 
placed over the same muscle (75). Intramuscular coherence is 
supposed to reflect the neural drive from the primary motor 
cortex to the muscles (75). EMG–EMG coherence has been found 
to be quite reliable during treadmill walking, however, although 
the derived coherence variables can be considered to be reliable 
measures, large changes are needed to indicate a real difference 
in an individual level (76).

It can be reasoned that CMC reliability as measured during 
human locomotion tasks (i.e., walking) is also promising; how-
ever, thorough investigations of the psychometric properties of 
the measurement approach are needed to substantiate or refute 
this assumption. We are currently far from having precise and 
accurate measurements of neuronal communication during 
human bipedal motion and available results from studies employ-
ing CMC (or EMG–EMG) techniques should be interpreted with 
prudence. The reproducibility and reliability of CMC measure-
ments during human bipedal motion is an important issue not 
yet clarified on both group and individual levels and should be 
topic of future studies.

Another issue that needs to be resolved relates to the consist-
ently reported efferent cortical role during the gait cycle (62, 65, 
66). So far only one study evaluated the CMC during overground 
walking, reporting that in this more “ecological” scenario also 
the afferent pathway is involved in and throughout human 
locomotion (66). This is a standpoint of importance, given that 
in many clinical conditions where gait disturbances are present 
(e.g., muscle weakness, Parkinson’s disease), the entire feedback–
feedforward motor control loop seems to be impaired. However, 
CMC should be regarded as a surrogate measure of the actual 
and direct neuronal communication taking place in humans. For 
example, it may well be that CMC cannot be found in a (healthy) 
subject, because of limitations either in applied study protocols, 
in the methods of analysis employed or, more generally, because 
of subject-to-subject variability. Obviously, this does not mean 

absence of communication between brain and muscles; rather 
this is simply believed to be due to the fact that CMC applied 
during human bipedal motion assessment is still in its fledgling 
state of development and has several limitations that should be 
overcome.

Finally, future studies on CMC should consider to both estab-
lishing the reproducibility and reliability of CMC measurements 
as well as disentangling the causality in the connectivity measures 
(65, 66), possibly employing common CMC signal processing 
methods of analysis, thus enabling more consistent comparisons 
and to determine the most meaningful approach.

BrAiN/MUscLe cONNectivitY DUriNG 
GAit As POteNtiAL NOveL 
“BiOMArKer” iN cLiNicAL settiNGs

It has been shown that CMC has the potential to distinguish the 
presence of neuromuscular disorders such as in upper motor 
neuron disease (77). However, an important feature that future 
investigations should take into account is represented by using 
CMC during gait as a potential biomarker of clinical diseases 
where human locomotion is impaired. An important opportu-
nity might be represented by the age-related progressive decline 
in muscle mass/strength, namely sarcopenia (78). Sarcopenia 
has a prevalence of about 10–20% in community-dwelling 
older adults above 65  years and goes up to 30–50% in those 
aged above 80  years (79–81). Sarcopenia, recently recognized 
as a geriatric syndrome by the Centers for Disease Control and 
Prevention (USA), requires better diagnostic methods for its 
determination (81). The potential relevance of using CMC while 
walking for detecting sarcopenia is driven by the fact that recent 
studies demonstrated that muscle atrophy is rather a relatively 
small contributor to the loss of muscle strength (82). Mounting 
evidence points to changes in neurologic function and/or 
the intrinsic force-generating properties of skeletal muscle as 
contributors to muscle weakness and motor dysfunction (83). 
Indeed, CMC has been defined as the hallmark of aging (84), able 
to distinguish younger from older adults based on fine motor 
(or motor-cognitive) tasks (85). Combining CMC measures 
with active walking within a MoBI framework can be assumed 
to provide meaningful information about the locomotor system 
in older adults (86).

cONcLUsiON

In conclusion, the last two decades have opened a new and 
fascinating “door” on the motor control research field investigat-
ing neuronal communication in human locomotion. This field 
of research is still in its fledgling state, however, it is promising 
for revealing some aspects of the brain’s role in human loco-
motion. To increase the chances for replication both on group 
and individual human levels, studies using MoBI approaches 
in humans should specify parameters of the tests used, e.g., 
the exact procedures and instrumentation used, the duration 
of testing, and applied algorithms used for data analysis (87). 
An important feature is investigating CMC within the MoBI 
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framework as a potential “biomarker” in neuromuscular disor-
ders (or syndromes), where the need of finding novel and better 
diagnostics is warranted.
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