
Can We Design Software as We Talk?

A Research Idea

Marcela Ruiz(B) and Björn Hasselman

Institute of Applied Information Technology, Zurich University of Applied Sciences,
Winterthur, Switzerland

marcela.ruiz@zhaw.ch, hassebjo@students.zhaw.ch

Abstract. In the context of digital transformation, speeding up the
time-to-market of high-quality software products is a big challenge.
Main challenges. Software quality correlates with the success of
requirements engineering (RE) sessions. RE sessions demand software
analysts to collect all relevant material usually specified on written notes,
flip charts, pictures, etc. Afterwards comprehensible requirements need
to be specified for software implementation and testing. These activities
are mostly performed manually, which causes process delays and soft-
ware quality attributes like reliability, usability, comprehensibility, etc.,
are diminished causing software devaluation. Innovative aspects. This
research idea paper proposes a framework for automating the tasks of
requirements specification. The proposed framework involves computa-
tional mechanisms to enable the automatic generation of software design
while requirements are discussed. The innovative aspect of this research
comes from digitally transforming the software development life cycle
(SDLC) where requirements are generated “on the fly” and virtual real-
ity systems are in place. Potential to make change. The proposed
framework has the potential to renovate the role of software analysts,
which can experience substantial reduction of manual tasks, more effi-
cient communication, dedication to more analytical tasks, and assurance
of software quality from conception phases. This research idea paper
introduces the framework for automating the task of requirements spec-
ification, and report our progress. We conclude the paper by outlining
lessons learnt and future lines of work.

Keywords: Requirements engineering · Digital transformation ·
Software development life cycle · User stories generation

1 Introduction

Living in a digital era, service providers are challenged to offer services to
their customers through a wide spectrum of channels. This constant introduc-
tion of new devices and technology challenges organisations to provide rapid

This research project is supported by ZHAW Digital and the Digitalisation Initiative
of Zürich Universities DIZH.

c© Springer Nature Switzerland AG 2020
S. Nurcan et al. (Eds.): BPMDS 2020/EMMSAD 2020, LNBIP 387, pp. 327–334, 2020.
https://doi.org/10.1007/978-3-030-49418-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49418-6_22&domain=pdf
http://orcid.org/0000-0002-0592-1779
https://doi.org/10.1007/978-3-030-49418-6_22


328 M. Ruiz and B. Hasselman

improvements of their IT infrastructure, while ensuring the highest user experi-
ence possible. Digital transformation stimulates the adaptation of existent busi-
ness models and the creation of new ones; while society adapts to new ways to
interact with services. Software systems are omnipresent in digital transforma-
tion process; making software quality of crucial value to ensure successful digital
transformation [1].

Software quality correlates with the success of requirements engineering (RE)
sessions [2], which makes RE a crucial phase of the software development life
cycle (SDLC) [3]. The agile movement have proposed user stories as a minimal
but complete language for the specification of software requirements [4]. This
language has been proven to be successful and widely adopted by software devel-
opers [5]. software requirements are collected during RE sessions in the shape
of pictures, flip chart notes, documentation etc. Later on, relevant information
is digitalised in order to specify a set of comprehensible user stories to be used
during development phases. Digitalisation of discussed requirements demands
extra effort that has to be undertaken by software analysts [6]. All this complex-
ity is magnified if we consider that software development is not usually taking
place in the same geographical location. Big companies make use of software
providers located in different continents. Teleworking is posing big challenges at
the moment to ensuring collaborative requirements engineering [7].

The main objective of our research endeavour is to reduce the time-to-market
of software products by automating the task of requirements specification while
requirements are discussed. In this research idea paper, we introduce a framework
for automating the task of requirements specification (see Fig. 1). We conceive a
requirements engineering room where participants discuss requirements that are
automatically specified in the shape of user stories, and transformed into software
prototypes. In this room, we incorporate virtual reality tools like double robots
for embodiment of remote participants, and interactive boards with collaborative
tools as they have demonstrated to facilitate access and real-time edition of dis-
cussed requirements [8]. By implementing the proposed framework in practical
settings, it is expected that SDLC goes through a process of digital transforma-
tion where software analysts are going to experience a significant reduction of
manual tasks. User stories will be generated on the fly during the session, and
virtual reality systems will allow efficient communication. Software analysts get
empowered by focusing on meaningful tasks like analysing created user stories
and prioritization. Software quality is then assured from the first release. The
framework components are still under design and evaluation phases. Particu-
larly, this paper reports our first steps towards automating the specification of
user stories “on the fly” during RE elicitation sessions. We discuss the design
and illustrate the use of the DEEP LEARNING CLASSIFIER and ONTOLOGY
CRAWLER components presented in Fig. 1. Setting up of the requirements engineer-
ing room and software prototype generation are considered part of our short term
research plans.

Paper Organisation: After reviewing related work in Sect. 2, we introduce our advances
on providing automatic specification of user stores in Sect. 3. We summarise the design
of two components: a deep learning classifier in Sect. 3.1, and an ontology crawler in



Can We Design Software as We Talk? 329

AUTOMATIC REQUIREMENTS SPECIFICATION

AUTOMATIC SPECIFICATION OF
USER STORIES

DEEP
LEARNING

CLASSIFIER

ONTOLOGY
CRAWLER

USER STORY
ASSEMBLER

USER STORIES

SOFTWARE PROTOTYPE
GENERATION

CODE
COMPILER LEGEND

COMPONENT

INPUT/OUTPUT

ARTEFACTSOFTWARE
PROTOTYPE

REQUIREMENTS ENGINEERING ROOM

INTERACTIVE BOARD

AUTOMATIC
TRANSCRIPTION

TOOL

END USER AND 
REQUIREMENTS

ENGINEERS
EMBODIMENT OF

REMOTE SOFTWARE
 DEVELOPER

How do you
want to buy
products?

I want to buy
products so my
SuperStore is
well supplied

In average, how
many products
do you buy?

REQUIREMENTS
TRANSCRIPT

REQUIREMENTS
SESSION RECORDING

As a <user> 
I want to <buy>
products so my
SuperStore is 
<well supplied>. 

SUPERSTORE

BUY

Fig. 1. Framework for automating the task of requirements specification

Sect. 3.2. Finally, we conclude our idea research paper by discussing lessons learnt and
future lines of work in Sect. 4.

2 Related Work

In the field of requirements engineering there are several related work that approach
the challenge of automate requirements specifications from different angles. We anal-
yse these approaches based on: (a) requirements source: audio recordings/transcripts
from requirements meetings, tweets, bug reports, user stories, existing documentation,
domain repository; (b) generated requirements specification in the shape of: meet-
ing minutes, knowledge extraction, tweets classification, relevant topics, remedied user
stories, meeting summaries, and user stories; (c) Existing validation or evaluation: lab-
oratory demonstration, comparative experiment; (d) Existence or not of tool support;
and (e) Whether or has been applied in practice.

Some works focus on supporting software requirements specification by generating
meeting minutes. For instance, Kaiya et al. [9] proposes a tool to support requirement
elicitation meetings by recording the sessions and providing an assistant tool to manage
the recordings and mark the important points via hypertext. Authors conclude that
further collaboration mechanisms need to be incorporated to facilitate real-time edition
of requirements and knowledge share. Murray et al. [10] developed a natural language
processing approach to summarize emails and conversations in general, more projects
involving textual sources appeared. Especially in the field of machine learning were
multiple techniques developed to extract requirements engineering relevant information
from different written origins [4,11–14].

Rodeghero et al. [13] proposed a machine learning classification algorithm trained
to recognise user stories’ information [15]. As a conclusion of this study, the authors
found out that information about software functionality and requirements rationale can



330 M. Ruiz and B. Hasselman

be identified by means of classification algorithms. Nevertheless, no information about
the role can be automatically extracted. Another tool assisted approach to dynamic
requirement elicitation was introduced by Abad et al. [14]. The tool extracts relevant
snippets and simultaneously uses a third-party API to recognize tone and intentions
of statements’ providers.

We have taken the aforementioned research works as a reference to cover the gaps
in terms of providing complete user stories from spoken software requirements during
elicitation sessions (see last row in Table 1).

Table 1. Summary of related research for automatic generation of software require-
ments.

Ref Requirements source Generated
requirements
specification

Validation or
evaluation

Tool support? Applied in
practice?

[9] Audio recordings from
requirements meetings

Meeting
minutes,
meeting
summaries

Comparative
experiment

Management
tool

Yes

[13] Audio transcripts
from requirements
meetings

Partial user
stories
(functions and
rationale)

Comparative
experiment

Machine
Learning
classifier

No

[14] Audio transcripts
from requirements
meetings, existing
documentation,
domain repository

Relevant topics Expert analysis ELICA tool Case study

[11] Tweets Tweets
classification

Comparative
experiment

ALERTme tool Tested using
Twitter

[4] User stories Remedied user
stories

Supervised
learning

AQUSA tool Tested in
University
lab

[12] Bug reports Meeting
summaries

Comparative
experiment

Machine
Learning
classifier

No

Ours Audio transcripts
from requirements
meetings

Complete user
stories (roles,
functions and
rationales)

Laboratory
demonstration

Yes No

3 Automatic Specification of User Stories

Our goal is to elicit complete user stories including information related to “Role, Func-
tion and Rationale”. Based on the research work presented in Rodeghero et al. [13],
we propose to classify software functionality in terms of functional and non-funcional
requirements; as well as identify requirements’ rationale from requirement elicitation



Can We Design Software as We Talk? 331

sessions. Our research strategy is summarised in Fig. 2. In short, our research idea is
to build a deep learning algorithm that can be further trained by providing labeled
requirements elicitation sessions. For identifying missing roles, we propose to make use
of existing ontologies that provide information related to typical roles belonging to the
context in which software elicitation sessions take place.

In this paper, we summarise the deep learning classifier (see Sect. 3.1) and the
ontology crawler components (see Sect. 3.2). For implementation purposes We chose the
Java language as it guarantees portability and its popularity results in maintained and
tested frameworks we can use. It has a sophisticated deep learning framework available
in DL4J1 and the Java OWL API2 for handling Ontology files. The components will
later provide the data to be used by the user story assembler component (out of scope
of this paper).

Fig. 2. Research strategy for automatic generation of user stories

3.1 Deep Learning Classifier Component

We propose a deep learning classifier based on the work proposed by [13]. We used deep
learning specifically, because our intention is to imitating the classification process
that has been done by using machine learning. In this way we can further compare
performance values in subsequent experiments.

A turn is an established unit of analysis in natural language processing as opposed
to using single sentences. It describes, when a person speaks in a conversation in
between other speakers. To represent a turn in a learnable format, we use word embed-
dings provided by the model described in the work of Pennington et al. “GloVe: Global
Vectors for Word Representation” [17]. Here, words will be represented as multidimen-
sional, real-value vectors. In a three-dimensional space, similar words would lie ‘closer’
together than those, that semantically differ. Different, pre-trained word embedding
models are available . The available representation dimensions depend on the vectors
but range from 50 to 300. They also differ in terms of topic and number of tokens.

1 https://deeplearning4j.org/.
2 http://owlcs.github.io/owlapi/.

https://deeplearning4j.org/
http://owlcs.github.io/owlapi/


332 M. Ruiz and B. Hasselman

For our initial development process, we used the smallest set; the “Wikipedia 2014 +
Gigawords”, which consists of 6 billion tokens and a representation of 50 dimensions.

The implementation of the deep learning classifier is available in our public
GitHub repository at https://github.com/lmruizcar/requirements classifier. An exam-
ple of classification is presented in Fig. 3. The model in its current state performs about
as well as random guessing since we need data for training purposes. As it has been
mentioned by [16], the lack of data from requirements elicitation sessions is an obstacle
in this type of investigations. Our model differentiates between three labels: None (0),
Non-Functional (1) and Functional (2). A caveat of this deep learning approach is, that
it only cares indirectly for the fact that turns can be both; labelled 1 and 2. Whereas
[13] built multiple binary classifiers which each analysed the turn, our approach uses a
SoftMax layer for which the output is interpret able as probabilities. A turn that falls
into both categories, would have probabilities around 0.5 for both labels which can be
interpreted individually, but is not represented in the standard evaluation method of
machine learning classifiers.

Fig. 3. Results from running the deep learning classifier component

3.2 Ontology Crawler Component

Rodeghero et al. stated, that in conversations in requirement elicitation meetings “only
0.5% discussed role” [13]. Which is why they concluded that it is not feasible to extract
role information from transcripts. For a complete user story, this role information
is crucial. An established practice in information science is the use of ontologies to
organize data and reduce complexity. We propose the ontology crawler component.
The ontology crawler searches an ontology for defined entities and their restrictions
to identify possible roles in the required context. As input, it takes an ontology from
a file formatted in Web Ontology Language format. As output, it generates a list of
foundational user stories, which consist of a role, an action and an object. For this, we
have implemented a prototype based on Java OWL API. The prototype is available on
our GitHub public repository at https://github.com/lmruizcar/ontology crawler.

Figure 4 exemplifies the generation of foundational user stories for the SmallShop
Case. A product manager needs to be able to add products to the shop and remove it,
e.g., if they are not in stock anymore. The customers that use the shop want to buy

https://github.com/lmruizcar/requirements_classifier
https://github.com/lmruizcar/ontology_crawler


Can We Design Software as We Talk? 333

Fig. 4. Example of executing the ontology crawler component in the context of the
SmallShop case

products. And for returning customers it is good practice to store relevant information
like the shipping address in a user account.

4 Lessons Learnt and Future Work

The current paper presents a research idea for automating the process of require-
ments specification. We propose a framework consisting of a requirements engineering
room, and components to support the automatic generation of user stories and soft-
ware prototype generation. This paper presents results from the implementation of the
components for automatic generation of user stories while requirements are discussed.
Our efforts lead to the development of prototypes for a deep learning classifier and
ontology crawler. Initial results are promising and proves the feasibility of the pro-
posed research idea. Prototypes are made available on our public GitHub repository
to motivate further research in the field.

For the near future, we plan to keep evolving the prototype for user stories assembler
component. In this way, we can obtain full user stories from elicitation sessions. For
our framework to mature and being implemented in practical settings, we envision to
build a flexible environment to support the plug-and-play of components that conform
the framework. In this way, we can incorporate alternative components while ensuring
a proper interoperability. In addition to evaluating the extent to which our solution
improves user stories’ generation in terms of efficiency, we plan to evaluate the intention
to use and usability of the framework from the perspective of requirements engineers.
For our long term plans, we plan to investigate the quality of software engineering
recordings to further adjust and improve our framework.

References

1. Gebhart, M., Giessler, P., Abeck, S.: Challenges of the digital transformation in
software engineering. In: The Eleventh International Conference on Software Engi-
neering Advances (ICSEA) (2016)

2. Mund, J., Femmer, H., Mendez, D., Eckhardt, J.: Does quality of requirements
specifications matter? Combined results of two empirical studies (2017). https://
arxiv.org/pdf/1702.07656.pdf

3. Chakraborty, A., Baowaly, M., Arefin, A., Bahar, A.: The role of requirement
engineering in software development life cycle. J. Emerg. Trends Comput. Inf. Sci.
3, 723–729 (2012)

https://arxiv.org/pdf/1702.07656.pdf
https://arxiv.org/pdf/1702.07656.pdf


334 M. Ruiz and B. Hasselman

4. Dalpiaz, F., Brinkkemper, S.: Agile requirements engineering with user stories. In:
26th International Requirements Engineering Conference (RE), Banff, AB, Canada
(2018)

5. Wagenaar, G., Overbeek, S., Lucassen, G., Brinkkemper, S., Schneider, K.: Work-
ing software over comprehensive documentation - rationales of agile teams for arte-
facts usage. J. Softw. Eng. Res. Dev. 6, 7 (2018). https://doi.org/10.1186/s40411-
018-0051-7

6. Wüest, D., Seyff, N., Glinz, M.: FlexiSketch: a lightweight sketching and meta-
modeling approach for end-users. Softw. Syst. Model. 18(2), 1513–1541 (2017).
https://doi.org/10.1007/s10270-017-0623-8

7. Damian, D., Zowghi, D.: RE challenges in multi-site software development orga-
nizations. Requir. Eng. J. 8, 149–160 (2003). https://doi.org/10.1007/s00766-003-
0173-1

8. Wüest, D., Seyff, N., Glinz, M.: Sketching and notation creation with FlexiSketch
team: evaluating a new means for collaborative requirements elicitation. In: 23rd
International Requirements Engineering Conference (RE), Ottawa (2015)

9. Kaiya, H., Saeki, M., Ochimizu, K.: Design of a hyper media tool to support
requirements elicitation meetings. In: Proceedings Seventh International Workshop
on Computer-Aided Software Engineering (1995)

10. Murray, G., Carenini, G.: Summarizing spoken and written conversations. In: Con-
ference on Empirical Methods in Natural Language Processing, PA, USA, Strouds-
burg (2008)

11. Guzman, E., Ibrahim, M., Glinz, M.: A little bird told me: mining tweets for
requirements and software evolution. In: 25th International Requirements Engi-
neering Conference (RE) (2017)

12. Rastkar, S., Murphy, G.C., Murray, G.: Summarizing software artifacts: a case
study of bug reports. In: Proceedings of the 32nd International Conference on
Software Engineering, NY, USA, New York, vol. 1 (2010)

13. Rodeghero, P., Jiang, S., Armaly, A., McMillan, C.: Detecting user story informa-
tion in developer-client conversations to generate extractive summaries. In: 39th
International Conference on Software Engineering (ICSE) (2017)

14. Abad, Z.S.H., Gervasi, V., Zowghi, D., Barker, K.: ELICA: an automated tool for
dynamic extraction of requirements relevant information. In: International Work-
shop on Artificial Intelligence for Requirements Engineering (AIRE) (2018)

15. Krasniqi, R., Jiang, S., McMillan, C.: TraceLab components for generating extrac-
tive summaries of user stories. In: International Conference on Software Mainte-
nance and Evolution (ICSME) (2017)

16. Rodeghero, P.: Behavior-informed algorithms for automatic documentation gen-
eration. In: International Conference on Software Maintenance and Evolution
(ICSME) (2017)

17. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word repre-
sentation. In: Conference on Empirical Methods in Natural Language Processing
(EMNLP), Doha, Qatar (2014)

https://doi.org/10.1186/s40411-018-0051-7
https://doi.org/10.1186/s40411-018-0051-7
https://doi.org/10.1007/s10270-017-0623-8
https://doi.org/10.1007/s00766-003-0173-1
https://doi.org/10.1007/s00766-003-0173-1

	Can We Design Software as We Talk?
	1 Introduction
	2 Related Work
	3 Automatic Specification of User Stories
	3.1 Deep Learning Classifier Component
	3.2 Ontology Crawler Component

	4 Lessons Learnt and Future Work
	References




