
International Journal of Software Engineering and Computer Systems (IJSECS)

ISSN: 2289-8522, Volume 5 Issue 2, pp. 1-14, August 2019

©Universiti Malaysia Pahang

https://doi.org/10.15282/ijsecs.5.2.2019.1.0057

1

COMPARISON OF TRADITIONAL AND AGILE SOFTWARE

DEVELOPMENT METHODOLOGY: A SHORT SURVEY

Sarang Shaikh, Sindhu Abro

{sarang.msse17, sindhu.mscs17}@iba-suk.edu.pk

Department of Computer Science, Sukkur IBA University

Main Airport Road, Sukkur, Pakistan.

ABSTRACT

Software Development Methodologies (SDM) are used for every activity performed on

a software product from initiation to maintenance. There are a variety of software

development methodologies (waterfall, spiral and iterative) that are available to develop

software products. One of the key challenges faced by the software developer is the

selection of SDM in a software product. No single methodology is ideal to work

effectively in all scenarios. Therefore, software product features play an important role

in the SDM selection. This paper aims to explain different features, characteristics,

critical practices, advantages, disadvantages of different methodologies related to the

software product. We have used six models including waterfall, unified process, spiral,

extreme programming, scrum, and feature-driven development. This paper also

summarized the limitations and cost control factors of SDM while developing software

products.

Keywords: Software Development Life Cycle (SDLC), Traditional Methodology, Agile

Methodology, Software Development, Software Engineering.

1. INTRODUCTION

Someone only says for software, that our modern world depends on it. To support this,

we discuss that in nearly past year's software development has become a difficult,

challenging and important activity of the modern world. Software products today are

somehow a picture of human ideas. So, the end-product is a representation of thoughts

presented in binary codes other than physical quantity. That's why different techniques

are required to produce such type of intangible products with higher quality, reduced

time and cost of development (Leffingwell, 2010).

In the starting days of development, software developed was without a specific

plan, the only listed and then implemented. As the level of thinking and technology

increases, the old strategies started slowing down. Soto achieves three parameters for

software products (quality, cost and time) software project management related persons

have developed different techniques named “Software Development Methodologies/

Framework”. The need to improve these is to achieve the best software products and to

map, maintain and control these products as a general product.

 At that time these frameworks were for small-scale products, but as time passes,

the level and value of software products become larger and results in increases in the

complexity and failure of development methodologies at a higher rate. The software

Sarang Shaikh, Sindhu Abro/International Journal of Software Engineering and Computer Systems 5(2) 2019 1-14

2

industry started to slow down due to such methodologies that adapted to speed up

industry and quality of the software.

To resolve the above-discussed problems, two methodologies were developed

1) Traditional Methodologies and 2) Agile Methodologies as shown in Figure 1.

Figure 1 Traditional Vs Agile Development Methodology

The main purpose of our research is to present a comparative study between

traditional and agile software development methodologies based on key features,

implementation limitations, cost estimations success factors, and implementation issues.

This study will help to select the most appropriate software development methodology

for a specific software development project.

2. STATE OF THE ART

While discussing software development methodologies, it will be the best approach to

categorizing those methodologies into two broad categories. The one is Traditional, and

the other one is the Agile methodology. From now on the various models will be

discussed below, after that, the multiple factors will be discussed which are quite

important for choosing a method to implement. From those discussions, we will

conclude that in which scenarios such as multiple team size, cost and budget issue and

also time period, which methodology will be useful so that it can reduce cost and time

as possible and guarantee a quality product. To check which methodology is best for the

organization or a product, we are going to define three models from each methodology

as well as advantages and disadvantages for comparison.

Comparison of traditional and agile software development methodology: A short survey, Pakistan

3

2.1 Traditional Methodology

It is the oldest method in the software industry since the 19th century; this

approach is also known as Sequential Methodology. Like its name, “sequential”

suggests a meaning that all the processes involved during the development of a product

are a phase to phase-dependent on each other. Also, this methodology gives detailed

documentation for each of the steps such as requirement engineering, design, coding,

testing, deployment. It is a plan-driven methodology that starts after a detailed analysis

and discussions; this approach is not useful when occurring of changes is entirely

multiple times in the development (Awad, 2005).

2.2 Agile Methodology

As time passes and the software industry started growing in an efficient way the

software analysts from all over the world combined in 2001, to have a talk on the future

for software development methodologies. As all of these methodologies were

supporting different software models discussed their standard features and concluded

that there should be a combination of all of these, and the result is “Agile

Methodology”. As compared to traditional methodology, this method focuses on people,

collaboration with customers, interaction with software rather than focusing on plans,

processes, and tools.

Table 1 explains some of the major characteristics of each methodology (Awad, 2005).

Table 1 Major Characteristics of Methodology (Awad, 2005)

Traditional Methodology

Agile Methodology

Predictive Approach - This approach

plans the whole project for an extended

period or by keeping an eye on the future

of the project. That plan is the basis for

the construction of the system as it

describes all the functions of the system,

the role of each team member, cost and

period for the development. All of this

work has been done by prediction from

earlier successful projects, whereas this

plan sometimes also provides wrong

assumptions in the future.

 Adaptive Approach - This method is

mainly for accepting changes in

development. The agile methodology

allows changes at every stage of

development because it believes that

changes in the requirements or anything

are the best point to develop a customer

satisfied product.

Comprehensive Documentation - In

this methodology, documentation is the

best key for development. It assumes that

proper documentation should include -

customer requirements, system

requirements and all of the necessary

information required for coding.

Balancing Flexibility and Planning -

Although planning is the most important

factor, planning for the whole project at a

single time is not the right approach.

Because there are many variables that

change during the development, so to

prepare for a short period is a good

strategy or planning is such a way that

you can quickly change your decisions or

Sarang Shaikh, Sindhu Abro/International Journal of Software Engineering and Computer Systems 5(2) 2019 1-14

4

reverse your decisions according to the

situation.

Process Oriented - There is a distinct

process to do all of the work in the

system, but not defined who will use this

process as anyone can use this. This

process describes the roles of managers,

developers, analysts, testers, etc. but the

procedure for these tasks is not clear.

People-Oriented - This methodology

considers the people of the organization

as the best part of the development rather

than any process. The people involve

managers, developers, designers, testers

with high skills, talent and committed to

the organization. It states that if people

possess such qualities so they can quickly

adapt and implement any process of

development for any project. It helps to

use multiple processes in the

organization.

Continuing the discussion for comparison between these two methods, we have

considered three software models from each methodology to compare different aspects

and their roles in the software development life cycle. All these models are explained

below with their basic definitions and development processes.

1) Waterfall Model

In the starting days of software engineering, the "code and fix" was the primary

strategy applied by software methodologists to work on software projects, this means

that first, you have to code the complete project and then to check for errors and fix it.

As this approach evidently failed when there were large software projects. So, in 1970s

Winston Royce proposed this methodology and called it the “waterfall model”. It is a

sequential method in which the whole project is divided into seven stages or phases; the

next step will only start when the previous one will be completed successfully and

checked. All these measures contain some deliverables; a phase will end if and only if

the required deliverables will be matched. This model is a baseline for some other

software development life cycle models (SDLC).

2) Unified Process (UP) Model

 It is a well-defined model, clearly explaining in a project what things need to be

done, when and who will do. This model works using Unified Modelling Languages

(UML), which means that all the phases, deliverables or outcomes are presented using

UML diagrams (i-e: use cases, class diagrams, etc). It is a huge model that almost

supports the development of all types of software products. This model works on three

key features: 1) Incremental/Iterative, 2) Architecture focused 3) Use Case Determined.

It is a component-based design, which creates such software systems that are easily

understandable, supports software reuse and combines with Object-Oriented

programming projects. The key feature of this model is that all the information is

represented graphically. Also, the incremental feature supports the customer feedback,

minimizes the risk and helps the developers.

Comparison of traditional and agile software development methodology: A short survey, Pakistan

5

3) Spiral Model

 Barry Boehm developed this model, after a very detailed analysis of the

waterfall model and Unified model, Boehm concluded that in the case of large software

projects (i-e: government projects) these both models fail due to increasing of risks as

well as changing of requirements due to significant time phase. So, this model is the

combination of these two models as a primary focus or key focus on risk management

of the product. This model involves some phases and iterations; the concept of stages is

taken from the unified process whereas the idea of sequential repetition is taken from

the waterfall model. All of these phases cover in a subsequent iteration, and by the end

of the first iteration, our product is ready, and the customer feedback is demanded and

checked. Based on those comments the second iteration starts and then another version

of the product is released. As described above that, it is a risk-focused process model,

due to cycles of this model risks can be easily found, resolved and then the particular

sequential model like waterfall can be applied for development purpose (Leffingwell,

2010), (Awad, 2005), (Munassar & Govardhan, 2010), (Aitken & Ilango, 2013), (Kroll

& Kruchten, 2003).

4) Extreme Programming (XP) Model

 This process introduced in 1996, is a disciplined software development process.

A lot of the research work is going in this process, and this method is taught in many of

the software engineering courses in the educational institutes (Process, 2001). The

biggest problems for which XP developed were fast-changing requirements from the

customer side, so in the XP the focus is only and only on the user needs with the time

and budget issue keep in mind. XP is highly used to produce a quality product that

accepts changing the conditions. According to Williams “XP team members spend few

minutes on programming, few minutes on project management, few minutes on design,

few minutes on feedback, and few minutes from team-building many times each day

(Boehm & Hansen, 2004).”

5) Scrum Model

 This process was introduced by two researchers “Jeff Sutherland” and “Ken

Schwaber”, when working on this for an extended period and at last by the end of June

2006 the first Scrum was professionally implemented, and training on an understanding

of this process started (Boehm B. W., 1988). Scrum is an incremental process that

provides flexibility to the system and provides help to the team members for the

constantly changing environment. Scrum doesn't provide different software

methodologies/practices, but it focuses on management practices and development tools

to overcome the unintentional complex hindrances during development (Osterweil,

2011). In the scrum, there are some variables in which it works such as customer

requirements, time pressure, competition, quality, vision, and recourse. It is an approach

that helps development teams to operate independently in the compound environments

(Alshamrani & Bahattab, 2015).

6) Feature Driven Development (FDD) Model

 In 1997, Jeff De Luca and Peter Coad introduced this process during a very

broad and complex project at the United Overseas Bank of Singapore. Jeff De Luca was

Sarang Shaikh, Sindhu Abro/International Journal of Software Engineering and Computer Systems 5(2) 2019 1-14

6

the project manager, so he concluded that the task would not complete during the given

time by applying available software development methodologies. So, he along with

Peter Coad and some others introduced a new process called “Feature Driven

Methodology”. This model is also called “Modelling in color technique”. This approach

doesn't focus on the complete development process, but it only emphasizes the design

and coding phases. This method has two main tasks: 1) to identify the features to

implement, 2) function – to – feature implementation. All the elements are represented

using UML diagrams, which is understandable to both developers and the customers if

the list of features is as precise as possible it will be beneficial for the developer to

maintain the quality and extend the code (Leffingwell, 2010) (Williams & Upchurch,

2001) (Williams, 2003).

2.3 Advantages and Disadvantages

The effects of these software models could not be understood by reading just

definitions, but it can be clearer by understanding their advantages and disadvantages

regarding different SDLC parameters; also, effects on end-user software products. Table

2 explains some of the major advantages and disadvantages of all six software models

discussed above.

Table 2 Advantages and Disadvantages of Software Process Models (Fruhling,

McDonald, & Dunbar, 2008) (Jakobsen & Sutherland, 2009)

Advantages Disadvantages

Traditional

Methodology

Agile

Methodology

Traditional

Methodology

Agile

Methodology

Waterfall Model Extreme

Programming

(XP) Model

Waterfall Model Extreme

Programming

(XP) Model
1) Easy to understand

and manage due to

distinct phases.

1) This model is

suitable for small

projects as well as

where customers are

specific, not general.

1) To adjust a scope or

requirements during

the development is

hazardous.

1) Difficult to manage

for large projects where

comprehensive

documentation is

involved.

2) Arrangement and

testing of tasks done at

the end.

2) It focuses on team

coordination.

2) No complete product

produced until the end

of all the stages.

2) There is no guidance

to gather/collect the

data.

3) Phases complete at a

single time, due to

well-documented

stages.

3) It emphasizes the

final product.

3) Poor model for the

compound projects

where the rate of

change for the

requirements is quite

moderate.

3) Need experience and

skills to handle the XP

practices.

Unified Model Scrum Model Unified Model Scrum Model
1) The iterative

procedures increase the

efficiency of this

process.

1) This model provides

open discussions in

which every team

member knows very

well his role.

1) Not applicable for

small industries.

1) The teams are only

responsible for

decision making.

2) Testing was done

during the iteration and

the cost of testing

inevitably reduces.

2) Focus on team spirit

and communication.

2) If there are no expert

project managers, this

process is too difficult

to apply correctly,

complicated too.

2) If any of the team

members leave during

the project it

profoundly affects the

development.

Comparison of traditional and agile software development methodology: A short survey, Pakistan

7

3) It works well for

small as well as

moderate size projects.

3) Frequent meetings

and gatherings for

better feedback from

the customers and

stakeholders.

3) In the case of using

new technology, the

reuse of components

will be an issue.

3) The presence of not

properly committed

team members can

cause the project to

fail.

Spiral Model Feature Driven

Development

(FDD) Model

Spiral Model Feature Driven

Development

(FDD) Model
1) Focus on planning

and verification in

early stages of

development.

1) The top priority is to

satisfy the customer by

providing the early and

valuable product.

1) It is not suitable for

smaller projects.

1) It depends only on

inspections of design,

code for quality

purposes.

2) Each deliverable

must be testable.

2) Teams are highly

communicative, but

there is a small size of

groups to avoid

overhead.

2) This phase entirely

depends upon risk

analysis, that’s why it

demands higher

expertise.

2) It doesn’t support

refactoring.

3) Works well for those

projects where risk

analysis is the main

problem to resolve.

3) Parking lot charts

and feature maps help

to track the progress

quickly.

3) Hard to handle

changing requirements.

3) There is no written

documentation for use

in the future.

3. DISCUSSION

This section discusses the comparison of traditional and agile development

methodologies based on list of key differences, issues, methodology criteria, limitations

and cost estimations.

3.1 Comparison Based on Key Differences

 Table 3, explains the comparison of traditional and agile development

methodology based on major key differences identified from the previous studies.

Table 3 Comparison Based on Key Differences

 (Leffingwell, 2010) (Jakobsen & Sutherland, 2009)

Key Difference Traditional Methodology Agile Methodology

Customer Less knowledgeable, co-

operative

Dedicated, knowledgeable,

representative

Developers Sufficient skills, plan-

determined

Knowledgeable, co-operative,

collocated

Objectives High assurance Rapid value

Requirements Stable Unknown, frequent changes

Size Larger teams and products Smaller teams and products

Refactoring Costly Cheaper

Risk Well known, minor effects Unknown, major effects

Sarang Shaikh, Sindhu Abro/International Journal of Software Engineering and Computer Systems 5(2) 2019 1-14

8

3.2 Comparison Based on Issues

Table 4, explains the comparison of traditional and agile development

methodology based on major issues identified from the previous studies.

Table 4 Comparison Based on Issues

(Leffingwell, 2010) (Jakobsen & Sutherland, 2009)

Issue Traditional Methodology Agile Methodology

Development cycle Incremental Linear

Requirements Clearly defined Not defined

Documentation Detailed / heavy Light

Team members Distributed teams Co-location of teams

Development style Predictive Adaptive

Client involvement Low Active

Project Size Large Small

Domain Predictable Unpredictable

Team size Large Small

Return on investment End of project Early in the project

3.3 Comparison Based on Methodology Criteria

Table 5, explains the comparison of traditional and agile development

methodology based on different methodology criteria identified from the previous

studies.

Table 5 Comparison Based on Methodology Criteria (Schwaber & Beedle, Agile

software development with Scrum, 2002)

Methodology Criteria Traditional Methodology Agile Methodology

Unclear user requirements Bad Excellent

Unfamiliar technology Good Bad

Complex systems Good Bad

Reliable Good Good

Frequent changing Bad Excellent

High risk Good Bad

Cost Bad Excellent

3.4 Limitations of Both Traditional and Agile Methodology

1) Traditional Methodology

The first flaw in this method is the adoption of frequent changes during

development. There are two processes “Empirical” and “Defined”, this approach uses a

defined process during development. In this process, all of the requirements from the

customers described clearly and cost, time is predicted, implemented and results

produced. But here is a point to think that if during implementation customer's demands

for change in the requirements then there will be an issue because this process doesn't

accept frequent changes during development or some predicted variables such as cost

and time results in the wrong then there will be overrun of both these.

Comparison of traditional and agile software development methodology: A short survey, Pakistan

9

 As far as engineering or large projects are concerned this methodology

succeeded (Jensen & Zilmer, 2003). Furthermore, the “Standish Group of Companies”

had done a study research survey in which 365 sources and 8380 applications were

involved. The sources include IT Executives, Large, medium and small companies. The

applications include three categories for the type of projects, category-1: Succeeded

Projects, category-2: Failed Projects, category-3: Challenged Projects. The study results

that 16.2% of the projects succeeded on time with mentioned budget and

functionalities, 31.1% of the projects stopped at some point during the development and

52.7% of the projects challenged due to overrun of budget and time with less mentioned

functionalities before development.

This study further provides information about the variables which caused all of

these results (Schwaber, Scrum development process, 1997). For successful projects,

there was high availability of these three things: User Involvement, Executive

Management Support, Clear Statement of Requirements. For failed projects, there was

high availability of these three things: Lack of User Input, Incomplete Requirements,

and Specifications Changing Requirements and Specifications. For challenging projects,

there was high availability of these three things: Incomplete Requirements, Lack of

User Involvement, Lack of Resources. (Schwaber, Scrum development process, 1997)

The second one limitation for traditional methodology is managing complexity.

The tradition that first plans everything and then implement works well for less complex

or small projects but as far as large and complex systems are considered this tradition

fails. The solution to managing complexity is only “Simplicity in everything in the

system”. Here the simplicity means that the team should remove the waste and

inventory of the project such as lengthy documentation. Research studies have proven

that 25% of the maintenance cost is due to complexity. It is better to keep the rules and

everything simple and clear because simple code can be modified easily. To clarify this

more, there is another research study done by the “Standish Group of companies”. This

study states that 45% of the features and functions that were defined in the large,

complex documentations were not implemented in the system, that's why to keep the

documentation, and coding simple is the only reason to avoid this. (Schwaber, Scrum

development process, 1997)

The third one limitation for traditional methodology is “How this method treats

people in developing?” In the traditional method, the people were dealt with as

processes; the roles are being assigned to the individuals and assume that they will

complete it without inquiring the knowledge that the role suits the person or not? A

developer or programmer or any person cannot perform a role perfectly if it is not of his

skills or talent. So, the solution to this limitation is that the people must be assigned

such works which can they do with interest. Also, they must be appreciated by the

management.

2) Agile Methodology

 The first limitation of the agile methodology is that it is not suitable for

government agencies, large organizations such as banks, insurance companies, etc. or

long-term maintenance of the systems because these both involve detailed and large

documentations that were highly ignored in this methodology. So, these types of

organizations and the systems are satisfied with the traditional method because their

primary requirement is fulfilled there (Anderson, 2004). In agility, the work of

documentation is shifted towards the people or team members because it is an

Sarang Shaikh, Sindhu Abro/International Journal of Software Engineering and Computer Systems 5(2) 2019 1-14

10

assumption of this methodology is that all the team members will be there until the end

of the project. But in most of the cases, for large systems, this doesn't happen because

due to the long-term deadline, anything can happen to the team members and the team

can be disturbed. Moreover, documentation is necessary for maintenance, usage of the

system for a long span of time.

 The second limitation is that the agile methodology heavily depends upon the

involvement of the user or the people of the organization. So, the success of the project

is only dependent on the communication and performance of the people factor of the

team. If there is the best process implemented, but there is no best staff, then this

methodology fails. Also, if the level of the developers is a beginner or there is a

communication gap between the developer and the customer this method fails. The only

success criteria for the people are that they must be skilled and talented. (Anderson,

2004). In support to this limitation, Boehm contends noting that, “A significant

consideration here is the unavoidable statistic that 49.9999 % of the world's software

developers are below average” (Khramtchenko, 2004). The agile methods try to have a

cream of skilled people to work because the agile wants the people to understand or

tackle those jobs which were tackled by documentation in the traditional methodologies.

 The discussion of the people factor leads to another thing that by having capable

and skilled people, there is no need for best practices to work if the people are best

enough then they can collaborate with any practice. Another side of the people factor is

the involvement of the customer. But what happens when there are multiple clients,

conflicts of the requirements or the customers are not applicable to providing needs then

at this point the traditional methodology works best due to documentation, reviews, and

planning.

The third limitation is that how it works with larger teams, probably the most

significant limitation because for small teams, it works best, but for large, there is a lot

of issues to consider (Anderson, 2004). For team size greater than 20, it becomes

difficult for agile to manage the face-to-face conversation and the setup becomes more

complicated for the developer.

3.5 Cost Estimation in Both Traditional and Agile Methodology

The cost estimation process for the software begins in the planning phase of the

SDLC (Software Development Life Cycle). When the project manager is assigned a

project, first he thinks of what resources will be needed? I-e: hardware, software, testing

tools, employees, etc. After the planning of the tasks and identification of the resources

is finished the estimation process starts from the listed needed resources. One important

point to discuss is, if the project manager identifies the wrong resources, so all the

estimates will be a mistake and the project will be over budget. To overcome this issue,

the project manager must use some standard cost estimation techniques to calculate all

the estimations. Table 6, focuses on success factors for cost estimation in both of the

methodologies, which is included at the time of budget allocation then the project will

never over planned and found to be key factors in this.

Table 6 Success Factors for Cost Estimation (Goyal, 2008)

Traditional Methodology Agile Methodology

Entertainment Cost - The entertainment

cost is a severe reason for over budget of

Active Customer Involvement - Agile

processes highly support active

Comparison of traditional and agile software development methodology: A short survey, Pakistan

11

a software project. Entertainment cost

doesn't include just client-side costs, but

it also includes all of the extra expenses

that project manager does during the

project, such as outside meeting with

higher management, suppliers,

stakeholders, etc. Usually, the project

manager doesn't include this cost at the

time budget allocation for the project.

They decide to add this cost to the project

later. At that point project allocated

budget starts overrun and exceeded the

mentioned budget. So, the conclusion is

that the project manager must include

entertainment cost at the date of budget

allocation.

participation of the clients in the project.

According to agility the active

participation of the customer helps to

have a clear and concise picture of the

whole system and the expected end

product. The active participation of the

client also helps the developer to get the

objectives and requirements from the

customers when a customer identifies the

needs. Also, when the end product is

ready, the client can verify that if it is

according to his/her needs or not. This

approach highly reduces the cost of the

review of the system again and again.

Sponsor's Role - A sponsor is a person

who is responsible for allocation of

resources and budget for the project. He

is an indirect person involved in the

project, because the project manager

must have to continuously report to the

sponsor for the allocation of the

resources, also to inform him about the

budget that whether his budget is utilized

or not. Therefore, the involvement of the

sponsor is crucial for proper

identification of the resources because

this will help to estimate the actual costs.

If the only team members assume

resources needed for the project, then this

will inevitably cause the estimation to be

high for not resource requirements.

Strong Communication -

Communication is the task of conveying

information between two people or group

of individuals. The purpose of

communication is to discuss something at

any place. Most of the researchers

suggested that communication has a vital

role in software development. In software

development, communication is between

the customer and the management.

Active communication between both of

these results in a successful software

product. Daily meeting and talks between

both of these clarify the requirements and

scope of the product. More

communication will make their

relationship strong and thus resulting in a

successful software product. Also, a

review of requirements and short-term

outputs in the meetings will inevitably

reduce the cost of the system.

Suitable Estimation Technique - In

software development process, there are

some estimation techniques used for

estimation of the expenses. For example,

a top-down approach, price-to-win,

expert judgment, bottom-up approach,

rules of thumb, etc. From the past few

years, researchers are involved in

creating such a technique that can

provide accurate results for every

scenario. But still, they are failed,

because of changing requirements and

Simplicity - Agile offers simplicity in its

projects because it helps the project team

to complete the project in a shorter time

as the process is not so much complex.

Also, simplicity clarifies that which

resources are needed, or which features

needs to add into the design and the code.

This approach reduces the time and cost

estimation up to the individual level

because there will be no wastage of not

significant components and resources.

Simplicity has got three main points:

Sarang Shaikh, Sindhu Abro/International Journal of Software Engineering and Computer Systems 5(2) 2019 1-14

12

other factors in a project. Choosing the

right estimation technique is critical to

generating accurate estimates for the

project. Therefore till today, the best

solution is to pick a method according to

your project and circumstances. Also, it

is not possible that applying more than

one method will produce more than one

result, but those results should be

accurate.

1) do less, 2) do better and 3) do swarm.

Do fewer means that there should be

fewer tasks, fewer documents, and less

managerial reports. Do better means it

has its specific task in the design phase.

Do swarms means it simplify the

complexity generated during the

development.

4. CONCLUSION

During reviewing and studying, one thing is very clear that selection of the method is

only dependent on the type of project, resources needed, estimations, etc. While

discussing and studying traditional methods, some of the major points that concluded

were this method is best suitable for the compound as well as long term (up to some

years) projects, because the main feature supporting this is the documentation. Another

thing appears that this methodology highly resists change, whether it is the change of

requirements, resources or anything because at the early phases of this method the

requirements and other resources are being fixed for the whole project and according to

them the work is started. Basically, agile methodologies are being adopted for the

disadvantages by the traditional methods in the projects like small, business, frequent

changeable, short term, minimal cost, etc. So, in the agile instead of sequential

approach, the processes are break down into the small phases. Short outcomes after each

step shown for the client to get feedback and if there is any change in the demand that

needs to change at that time of the comments. If the estimates are very accurate and

employees are working timely then surely a quality product will be generated quickly.

So, the most important thing to conclude in last is that today the environment is

changing very frequently, so acceptance of the agile over traditional methodology will

surely help most of the business organizations to generate quality products. But the

importance of traditional method also cannot be denied because it has its functional

areas where it can perform better than agile. So, at last the conclusion is that it depends

on the type of project that we are going to build because no single solution can solve all

the general problems.

Comparison of traditional and agile software development methodology: A short survey, Pakistan

13

REFERENCES

Aitken, A., & Ilango, V. (2013). A comparative analysis of traditional software engineering and agile

software development. 2013 46th Hawaii International Conference on System Sciences, (pp. 4751-4760).

Alshamrani, A., & Bahattab, A. (2015). A comparison between three SDLC models waterfall model,

spiral model, and Incremental/Iterative model. International Journal of Computer Science Issues (IJCSI),

12, 106.

Anderson, D. (2004). Feature-Driven Development: towards a TOC, Lean and Six Sigma solution for

software engineering, Theory of Constraints. International Certification Organization, Microsoft.

Awad, M. A. (2005). A comparison between agile and traditional software development methodologies.

University of Western Australia, 30.

Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer, 61-72.

Boehm, B., & Hansen, W. J. (2004). Spiral development: Experience, principles and refinements, 2000.

DTIC Document.

Fruhling, A., McDonald, P., & Dunbar, C. (2008). A case study: introducing extreme programming in a

US government system development project. Proceedings of the 41st Annual Hawaii International

Conference on System Sciences (HICSS 2008), (pp. 464-464).

Goyal, S. (2008). Major seminar on feature driven development. Jennifer Schiller Chair of Applied

Software Engineering.

Jakobsen, C. R., & Sutherland, J. (2009). Scrum and CMMI going from good to great. 2009 Agile

Conference, (pp. 333-337).

Jensen, B., & Zilmer, A. (2003). Cross-continent development using Scrum and XP. International

Conference on Extreme Programming and Agile Processes in Software Engineering, (pp. 146-153).

Khramtchenko, S. (2004). Comparing eXtreme Programming and Feature Driven Development in

academic and regulated environments. Feature Driven Development.

Kroll, P., & Kruchten, P. (2003). The rational unified process made easy: a practitioner's guide to the

RUP. Addison-Wesley Professional.

Leffingwell, D. (2010). Agile software requirements: lean requirements practices for teams, programs,

and the enterprise. Addison-Wesley Professional.

Munassar, N. M., & Govardhan, A. (2010). A comparison between five models of software engineering.

International Journal of Computer Science Issues (IJCSI), 7, 94.

Osterweil, L. J. (2011). A Process Programmer Looks at the Spiral Model: A Tribute to the Deep Insights

of Barry W. Boehm. Int. J. Software and Informatics, 5, 457-474.

Process, R. U. (2001). Best practices for software development teams. A Rational Software Corporation

White Paper. TP026B, Rev, 11.

Schwaber, K. (1997). Scrum development process. In Business object design and implementation (pp.

117-134). Springer.

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum (Vol. 1). Prentice Hall

Upper Saddle River.

Sarang Shaikh, Sindhu Abro/International Journal of Software Engineering and Computer Systems 5(2) 2019 1-14

14

Williams, L. (2003). The xp programmer: the few-minutes programmer. IEEE software, 20, 16.

Williams, L., & Cockburn, A. (2003). Agile software development: it’s about feedback and change. IEEE

Computer, 36, 39-43.

Williams, L., & Upchurch, R. (2001). Extreme programming for software engineering education? 31st

Annual Frontiers in Education Conference. Impact on Engineering and Science Education. Conference

Proceedings (Cat. No. 01CH37193), 1, pp. T2D--12.

