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ABSTRACT 

 

Marine energy is gaining more and more interest in recent years and, in comparison to 

fossil energy, is very attractive due to predictable energy output, renewable and 

sustainable, the Horizontal Axis Hydrokinetic Turbine (HAHT) is one of the most 

innovative energy systems that allow transforms the kinetic energy into electricity. This 

work presents a new series of hydrofoil sections, named here NTSXX20, and was 

designed to work at different turbine functioning requirement. These hydrofoils have 

excellent hydrodynamic characteristics at the operating Reynolds number. The design of 

the turbine has been done utilising XFLR5 code and QBlade which is a Blade-Element 

Momentum solver with a blade design feature. Tidal current turbine has been able to 

capture about 50% from TSR range of 5 to 9 with maximum CPower of 51 % at TSR=6,5.   

The hydrodynamics performance for the CFD cases was presented and was employed to 

explain the complete response of the turbine. 

 

Keywords: Marine renewable energy; horizontal axis hydrokinetic turbine; hydrofoil; 

hydrodynamic performance; cavitation phenomenon. 

 

NOMENCLATURE 

 

HAHT horizontal axis hydrokinetic turbine 

CFD computational fluid dynamics 

CPower coefficient of power  

TSR tip speed ratio 

TCTs tidal current turbine 

EMEC european centre for marine energy 

NACA national advisory committee for aeronautics 

BEM boundary element method 

CL coefficient of lift 

CD coefficient of drag 

AOA angle of attack 

CP min coefficient of pressure  
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INTRODUCTION 

 

For access to reliable, affordable, clean energy and to keep the rise in global warming to 

well under 2 °C, innovation will be key. In this context, tidal energy is one of the more 

exciting emerging and innovative technology of the renewable marine energy that gives 

the guarantee of regular and predictable energy for commercial scale production of 

electrical power, Nachtane et al. [1]. According to Dajani [2], Mourad et al. [3] Horizontal 

axis hydrokinetic turbine was used to harness this energy to meet the rising energy request 

while decreasing impacting the hydrological ecology. The success of employing TCTs to 

exploit the tidal current is reliant on predicting their hydrodynamic performance. 

Methodologies require being installed for studying the physical and operational 

parameters of the turbines to enhance their performance. These technologies are 

beneficial as linked to wind turbine due to, minimal infrastructural investment, decreased 

environmental impacts and reduce sound problems [4-5].  

In a recent survey, some researchers [6-7] had listed the companies who has 

started establishing tidal current turbine (TCT) farms such as Andritz Hydro Hammerfest 

(AHH) in Anglesey (Wales, UK), Sabella in France, GE & Alstom Energy (France), 

MeyGen in Scotland, GE & Alstom Energy, and DCNS, EDF (France& Canada) which 

will start working in following years. These pre-commercial TCT projects account for the 

industrial solution in the future years and can be verified from the websites of these 

enterprises with up to date commercial news about the advancement in TCT technologies. 

For example, the European Marine Energy Center (EMEC) was set up with the goal to 

test and improve marine renewable energy systems and is functioning from 2005. 

Marine current turbines have observed a lot of research work in recent years and 

are indeed a technology close to the industrial stage but still in the experimental phase in 

European Center for Marine Energy (EMEC) in Scotland or the experimental site of 

Paimpol in France. However, only prototypes have been tested such as two-bladed 

SeaGen project turbines in the UK manufactured, Three-bladed Hammerfest Strom 

turbine (Norway), and there multi-bladed Underwater Electric Kite (UEK) which 

currently work a wholly functional plant at Eagle, Alaska [8-9]. Currently, no park in the 

world containing many tidal turbines connected to the electricity grid. The majority of the 

prototypes that exist so far show that the designers of turbines have tried to rely on the 

technology already devoted to the wind because of the similarity, sometimes excessive, 

between the two concepts [10]. The global tidal energy potential is estimated at between 

50 and 100 gigawatts. At the European level, the United Kingdom has 75% of the 

potential, 50% in Scotland, France has 20%, and the rest of the potential is divided 

between Greece, Italy, and Norway [11-12].  

According to Li et al. [13], the hydrodynamics design method of the hydrokinetic 

turbine blade design can be classified into three steps (Figure 1). Various investigations 

have been conducted to furnish an appropriate blade section for HATCT. The principal 

purpose of blade conception is to improve the coefficient of lift and reduce the coefficient 

of drag and the coefficient of pitching moment [14]. Ahmed [15] wrote an excellent paper 

of the evaluation of the blade part of being utilised in TCTs. Goundar et al. [16] employed 

HF10XX series of blade part to design a 3-bladed HATCT rotor of 10 m diameter. HF 

present the abbreviation of the hydrofoil, new hydrofoils with various thicknesses were 

employed at the several parts of the blade, and the maximum power is 150 kW at the rated 

current 2 m/s, and the maximum efficiency of 47.5% was obtained. Molland et al. [17] 

assessed lift and drag feature and used numerical codes cavitation tunnel and 

experimental on NACA 6615, 63-815 and 63-215 foils, Hydrofoil who has high lift 
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coefficient and high camber were get to be endangered to limited cavitation for the high 

coefficient of lift. Lawson and Sale [18] used NACA 63-series blade to model a HAHT 

rotor of 20 m diameter because the coefficient of pressure is big enough, who do this 

hydrofoil resistant to cavitation. Grasso [19] designed a two novel hydrofoil called G-

hydra –A, G-hydra-B using an algorithm of Sequential quadratic programming (SQP). 

Batten at al. [20] employed NACA 63-8xx series to predict horizontal axis TCTs rotor 

characteristics and described the cavitation experiment for NACA series (63-815 and 63-

215).  

Hydrofoils are an essential element of HAHT. To improve the turbine output and 

provide enough strength to the blade structure, hydrofoils must be correctly designed, 

Laurens et al. [21]. Moreover, in order to satisfy the requirements of TCTs designs, which 

are mostly, associated with problems such as mass gain, fouling resistance, corrosion 

resistance, manufacturing methods and coating technology according to Nachtane et al. 

[22], the future work will involve the use of composite materials because of their excellent 

mass/durability relations. This paper shows a new design of hydrofoil for Horizontal Axis 

Hydrokinetic Turbine. Hydrofoils were designed for various blade position; they are 

called as NTSXX20. The hydrodynamic performance of the hydrofoils was examined. It 

was guaranteed that the designed hydrofoils with delayed cavitation while the required 

working conditions with the low profile and the drag the high maximum lift and the 

insensitive to roughness have been achieved. The features of the NTSXX20 hydrofoils 

were linked with other frequently employed hydrofoils. 

 

 
 

Figure 1. Blade design flowchart. 
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REQUIREMENT AND HYDROFOIL DESIGN CHARACTERISTICS 

 

The efficiency of the rotor is frequently depended on the shape of hydrofoil employed 

[23]. The principal objective of hydrofoil conception is to grow the coefficient of lift and 

reduce the coefficient of drag and the coefficient of pitching moment [24]. Cavitation 

phenomenon is an important element in selecting a hydrofoil for tidal current turbine 

blades [25]. Hydrokinetic turbine hydrofoil design can be divided into two very distinct 

yet interdependent domains. The first is its hydrodynamic design, while the other is its 

structural design. The purpose of the hydrodynamics design is to achieve a preferred 

external profile of the blade that provides the favourite performances, such as good blade 

strength, delayed stall, and cavitation-free. But the major requirements of hydrofoil 

design are high CL and high L/D ratio over a wide range of AOA to obtain a good turbine 

performance. 

On the other hand, the maximum hydrofoil thickness and the chord-wise place of 

the highest thickness are the most significant parameters for the optimal design of TCTs 

from the structural viewpoint. However, sufficient high-impact strength, corrosion 

resistance, and lightweight are required for tidal current turbine and can alone is 

performed by the use of composite materials, starting with a conception which provides 

a compromise among endurance, efficiency, cost, and weight [26-27-28]. The greatest 

dissimilarity among tidal current turbine and wind turbine blade is linked with the 

cavitation. This phenomenon is the formation of vapour cavities of a flowing liquid. It 

generally happens once a liquid is exposed to quick changes of pressure where the 

pressure is low enough. When exposed to higher pressure; the cavities implode and can 

produce an intense shock wave, [29]. It causes mechanical damage (Figure 2) to turbine 

blades and diminishes its performance, the coefficient of lift to reduce and coefficient of 

drag to increase [30-31]. The cavitation phenomenon principally depends on the pressure 

coefficient, the local minimum CPmin of the blade section and the cavitation number. 

 

 
 

Figure 2. Structural damage due to cavitation. 

 

A successful blade conception must meet a wide range of objectives to achieve 

good turbine performance:  

i. maximise annual energy yield for the specified current speed distribution  

ii. delayed cavitation inception  

iii. resist ultimate and fatigue charges and reduce tip deflections  

iv. minimise weight and cost 

v. robustness to roughness 
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Generally, blade element momentum theory is widely used to enhance the 

conception for a rotor blade and for predicting the performance with the operating 

requirement of the hydrokinetic, Batten et al. [32]. The performance hydrodynamic of 

hydrofoils on the rotating turbine work differently. Once the rotor is in motion, the blade 

section begins to experience a relative component of tidal current velocity at variable 

angles of attack depending on blade parameters. Also, the hydrofoil section experiences 

a different component of forces. The direction of tidal current velocity, blade forces, and 

angle are presented in Figure. 3. These components of forces and velocities can be utilised 

to predict theoretical rotor performance, employing the Blade Element Momentum 

(BEM) theory. 

 

 
 

Figure 3. Hydrodynamic component of forces and velocities on horizontal axis 

hydrokinetic turbine. 

 

Using BEM method by Muratoglu et al. [33], the thrust on an element of the blade 

due to change in the axial momentum and the torque on an element due to change in the 

angular momentum, comprising the Goldstein factor k for finite number of blades will 

give the equation for thrust (T) and torque (Q) gradient: 

 
dT

dr
=4πρr[U0

2a(1-a)k+(aΏrk)²] 

 

(1) 

dQ

dr
=4πρr3aΏU0(1-a)k 

(2) 

 

By considering the blade element, the local lift and drag gradient can be defined by: 

 
dL

dr
=

1

2
ρNW²CL 

 

(3) 

dD

dr
=

1

2
ρcNW²CD 

(4) 
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Where N is the number of blades, the rotor thrust, and torque can now be defined as: 

 
dT

dr
=

dL

dr
cos φ+

dD

dr
sin φ 

 

(5) 

dQ

dr
=r(

dD

dr
cos φ+

dL

dr
sin φ) 

(6) 

 

Combining Eq. (1), (2), (5) and, (6) yields equations for axial (a) and tangential (𝑎,) inflow 

factors, these can be solved by iterating 𝜑. 

 
a

1-a
=

σk

4πkXr sin² φ
[Cx-

σkCy

4πkXr sin² φ
] 

 

(7) 

a,

1+a,
=

σkCy

4πkXr sin φ cos φ
 

(8) 

 

Where  Cx=CL cos φ+CD sin φ , Cy=CL sin φ -CD cos φ, and the final equation for power 

and thrust gradient are given by Eq. (9) and (10), the integration of these equations gives 

power and thrust. 

 
dCP

dx
=

2TSR(1-a)²σkCyX 

π sin ² φ
 

 

(9) 

dCT

dx
=

2(1-a)²σkCX 

π sin ² φ
 

(10) 

 

HYDRODYNAMIC PERFORMANCE OF A HYDROKINETIC TURBINES 

BLADE 

 

Hydrofoils are essential element of horizontal axis hydrokinetic turbine that helps to 

transform kinetic energy into mechanical energy and their excellent design engage to the 

increased overall performance of the blade [33]. Usually, there is no existing hydrofoil, 

which satisfies all conditions, or manufacturer thinks, that he can conception something 

novel with enhanced performance. Beginning from this point, each manufacturer has its 

proper approach and his approved tools to proceed. Several methodologies can be 

adopted, some like to employ an inverse design technique (like the Eppler code) 

suggested by Lighthill and commonly promoted by Eppler to ordain flow parameters and 

obtain the resulting shape (hydrofoil) from the code by iteratively changing the pressure 

repartition on the hydrofoil surface, Selig et al. [34]. Others prefer to employ a starting 

hydrofoil and employ analysis codes (or a wind tunnel) to proceed in a trial and error style 

to obtain an excellent hydrofoil shape. 

In general, this second approach is usually employed in combination with a 

numerical optimisation code. A review of research literature in tidal current turbine design 

shows that the Computational fluid dynamic is commonly utilised software for the 

performance study of a hydrofoil [13]. A wide variety of numerical methods used in wind 

power are applied in the tidal field. However, the difference in operation in air and water 

implies that air calculation methods have limitations in representing the physics of the 
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flow around the blades of a tidal turbine. Additionally, RFOIL and Xfoil are the 

frequently employed codes for a 2D model who can afford coefficient of lift (CL), the 

coefficient of drag (CD), and coefficient of pressure (CP) of the hydrofoil. When the 

required factors are suitably set, same Reynolds number and boundary layer, Xfoil, 

RFOIL and XFLR5 can also be utilised for analysis and conception design hydrofoil. 

Among benefits, according to Marten et al. [35] XFOIL code is greatly more efficacy 

than computational fluid dynamic tools because it’s free from mesh structure which often 

drives to a huge time of simulation. It is affirmed to be appropriate for foretelling 

cavitation criteria at the introductory conception step. When the AOA is little, XFOIL 

code can foretell the efficiency of the hydrofoil such as computational fluid dynamics 

tools do, but it missed after stall. You have to use the Viterna method to spend the 

available range of XFOIL from pre stall to post-stall. 

In this research, a high lift hydrofoil suited for low Reynolds number regime and 

a high lift ability similar WORTMANN (FX74-CL5-140) is selected into account for 

design and analysis of a new hydrofoil by changing its shape. In order to improve their 

hydrodynamic characteristics and to make it operates at the requirement for hydrokinetic 

turbines, Hydrofoil redesigned by interacting changing of geometrical parameters such as 

( highpoint position, LE radius, Max thickness and camber, camber line via geometry 

specification, TE thickness,  flap deflection, camber line via loading change specification, 

explicit contour geometry) by employing computational analysis. Experimental analyses 

of hydrofoil via wind tunnel tests are rather hard to conduct due to the expensive cost of 

the wind tunnel. In this context, various numerical investigations codes were established 

providing technical support for the foil study XFLR5 [35], RFOIL [18], XFOIL [29]. In 

this research, XFLR5 code was used which comprise the program for foil analysis with 

viscous boundary layer and wake model by employing traditional methods at low 

Reynolds numbers. The results of the performance of the designed model have been 

linked with some experimental data found in the open literature and the results of other 

simulations. The curve for the check of XFLR5 performance relative to the numerical and 

experimental results is presented in Figures 4 and 5. XFLR5 code presents great 

performance correlating with experimental results [36] and numerical investigation 

software.  

The FX 74-CL5-140 airfoil was utilized as the reference for the optimization by 

modifying their maximum camber, maximum thickness, nose radius to enhance their 

hydrodynamic performance. The optimized hydrofoil was greatest to operate as a 

hydrofoil for hydrokinetic turbines, with the growth in the chamber by 10% and thickness 

by 20 %. It is named as NTSXX20 and the profile can be viewed in Figure 6. 

To achieve low drag, an ideal weight slope is satisfactory along the upper surface 

to around 30-percent chord. Toward the back of this point, a short locale of troublesome 

pressure gradient ("Transition ramps") is invaluable to upgrade the productive change 

from laminar to turbulent stream. Along these lines, the underlying incline of the pressure 

recovery is moderately shallow. This short area is kept by firm concave pressure 

recuperation. The particular concave pressure recuperation connected portrays a tradeoff 

among high lift, low drag, and accommodating slow down attributes. The precarious 

unfriendly pressure angle on the upper surface toward the back of around 90-percent 

chord is a 'separation ramps' initially proposed by F. X. Wortmann, which limits turbulent 

division to a little locale close to the trailing edge [37]. By controlling the development 

of the division point at high approaches, high lift coefficient can be accomplished with 

little drag punishment. This element has the additional advantage that it too advances 

quiet slow down qualities. 
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Figure 4. Validation of XFLR code with numerical and experimental results for the 

NACA-633418 airfoil. Re=106, free. 

 

 
 

Figure 5. Numerical and experimental of the coefficient of lift of FX 74-CL5-140 at 

Re=106. 

 

 
 

Figure 6. Hydrofoil NTESXX20 modified from FX74-CL5-140. 

 

For more illustration, the pressure coefficient designed around hydrofoil is 

presented in Figure 7 for the AOA 13°. The pressure built in the top surface for both 

hydrofoils diminishes quickly from leading to trailing edge, but in the inferior side, it 

grows. With the growing of relative thickness, the coefficient of pressure reduces more 

gently in the upper surface but grows quickly in the lower surface. Pressure variance 
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grows with growing hydrofoil thickness once linked superior and inferior surfaces. 

Though with the growing relative thickness, the coefficient of drag also rises, and the 

coefficient of lift growth is not proportionate to the thickness of hydrofoil. If the 

coefficient of drag didn’t grow with the thickness of hydrofoil, thick hydrofoil would 

have a greater coefficient of lift. 

 

 
 

Figure 7. Pressure coefficient distribution of NTESXX20 and FX74-CL5-140 at α = 

13° and Re=2.106. 

 

 
 

Figure 8. Variation of the coefficient of lift for NTSXX20 compared with FX74-CL5-

140 at different AOA and Re=2.106. 

 

Growing the camber and maximum thickness of hydrofoil growths its minimum 

coefficient of pressure CPmin, can be viewed in Figure 7, minimum CPmin of  FX74-CL5-

140 at 13° angle of attack (α) is about –3,9 and for NTSXX20 it has augmented to about 

–3. This will restrict the cavitation; despite the missing zone in growing the force pressure 

is augmented as the Cpmin among lowest CPmin and the transition region rises, later grew 

CL and decreased CD of the hydrofoil can be observed in Figure 7 and 8. NTSXX20 has 

a greater CL and lower CD related to FX74-CL5-140, it also has a higher thickness linked 

to FX74-CL5-140 granting more strength and durability to the blade structure, as in 

Figure 9. 
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Figure 9. Variation of the coefficient of drag for NTSXX20 compared with FX74-CL5-

140 at different AOA and Re=2.106. 

 

QBlade’s BEM code was employed to simulate the turbine performance curve of 

the HAHT under the operating condition with an incoming water speed of 2 m/s over a 

TSR range from 1 to 10 (See figure 10). The XFLR function of QBlade was employed to 

gather the lift and drag data for each hydrofoil sections and the 360° polar Montogomerie 

extrapolated method is employed. Data from XFLR was loaded in the BEM function of 

Qblade utilizing the resulting design of the HAHT. Figure 11 shows the resulting HATT 

performance curve maintained a Cpower value of over 50% from TSR range of 5 to 9 with 

maximum CPower of 47% at TSR=6,5. 

 

 
 

Figure 10. Hydrodynamic performance curve from the QBlade BEM results. 
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Figure 11. Cpower vs TSR curve from the QBlade BEM results. 

 

CFD SIMULATION OF HYDROFOILS 

 

The CFD simulations of new hydrofoil were conducted in the Abaqus, as 2D models. The 

simulations provided for studying pressure and velocity distribution as well as the lift and 

drag forces. Figure 12 shows the velocity and pressure distribution for the angle of attack 

α = 0°. The key factor for extracting energy is a hydrofoil and its hydrodynamic 

performance. For the evaluation of this factor, tools using BEM (blade element theory) 

like XFLER can be employed. However, much more information can be gained from 

CFD simulations, which employ numerical solutions of flow governing equations. These 

are continuity equation which is also called mass conservation equation and Navier 

Stokes equation [38]: 

 
∂ρ

∂t
+∇.(ρU)=SM 

(11) 

 

The final equation defined by: 

 
∂(ρh)

∂t
-
∂ρ

∂t
+∇.(ρUh)=∇.(λ∇T)+∇(Uτ)+U.F+SE 

 

(12) 

 

 
(a) 1 m/s 
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(b) 2 m/s 

 

 
(c) 1 m/s 

 

 
(d) 2 m/s 

 

Figure 12. (a), (b) Pressure and (c), (d) velocity distribution of NTSXX20. 

 

HYDRODYNAMIC CHARACTERISTICS OF THE NTSXX20 COMPARED 

WITH OTHER HYDROFOIL DESIGN 

 

The hydrodynamic features of various hydrofoils were analysed at Re=2.106 [20]. Figure 

13 shows the comparison between the designed hydrofoil for this study and other 

hydrofoils. The coefficient of pressure for various hydrofoils at different AOA can be 

observed in Figure 14. The CL and CD variations for various hydrofoils at various AOA 

can be viewed in Figures 15 and 16. It presents that the AOA for maximum CL for other 

hydrofoils is among 15° and 18° except for NTSXX20 is among 12° and 15°. Therefore, 

the Lift to drag ratio gets very little at these AOA, as can be viewed from Figure 17. 
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Figure 13. NTESXX20 hydrofoil profile compared with different hydrofoil. 

 

 
 

Figure 14. coefficient of pressure for various hydrofoils, at various AOA 

 

 
 

Figure 15. The coefficient of lift for various hydrofoils, at various AOA. 

 

The hydrofoil NACA 4418 has been numerically analysed for Horizontal of axis 

marine current turbine in [39]. It has the maximum coefficient of lift at around angle of 

attack of 17°, around 1.70 and coefficient of drag of about 0.048, (see Figures 13, 14). 

Minimum CPmin at maximum CL is about −5.098. There will be luck of cavitation 

phenomena on the blade if the maximum CL is being used for greater performance. NACA 

0018 airfoil has been utilised as a blade part for TCTs in [40]. It has the maximum CL at 

about AOA of 18°, around 1.570 and drag of about 0.036, at maximum CL, the minimum 

CPmin is about −7.33; however, its lift to drag ratio (L/D) get very little that is not proper 
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for conception a great performance rotor. S814 profile has been employed as a hydrofoil 

section for hydrokinetic turbines in [41-42]. It has a higher CL around 1.60 between 15°-

17° AOA but it has very little lift to drag ratio of a smaller amount of than 20 and 

minimum CPmin of −7.53°. S1223 profile has been utilised as the hydrofoil section for the 

hydrokinetic turbine in [43]. It has greater CL around 2.30 at 12° AOA and L/D ratio 

about 149.22 and minimum CPmin of −4.22°. However, the NTSXX 20 has a considerably 

higher lift of about 2.2 at 11° angle of attack and greater Lift to Drag ratio of about 80 

and lowest CPmin of −3.6, suitable for a great-performance rotor with delayed cavitation. 

 

 
 

Figure 16. The coefficient of drag for various hydrofoils, at various AOA. 

 

 
 

Figure 17. Lift to drag ratio for various hydrofoils, at various AOA. 

 

CONCLUSION 

 

To maximise the turbine output and afford enough strength to the blade structure, 

hydrofoils must be carefully designed. This research concentrated on the design of a new 

hydrofoil for the hydrokinetic turbine. The specifications for design hydrokinetic 

hydrofoil are illustrated. The blade section of the rotor is one of the indispensable parts 

of the hydrokinetic turbine which can convert kinetic energy the current into rotational 

energy to produce electricity. The hydrodynamic performance of a new hydrofoil is 

calculated using Qblade solver. As wind Tunnel Test is costly and not available 

everywhere, XFLR5 can be an excellent tool to analyse and discover out better-suited 
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hydrofoil for a hydrokinetic turbine as per the exigency. In addition, new hydrofoil can 

be designed and examined according to the requirement at a low price. Despite these good 

results, in the future work wind tunnel tests are suggested to endorse predictions, 

particularly for the stall performance. 
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