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Abstract 

This paper develops a proposed block-backstepping algorithm for balancing and 

tracking control of ball and arc system. Two block-backstepping designs have 

been presented; one from the linearized model and other from a nonlinear model 

of the considered underactuated system. Also, two main control objectives have 

been achieved; firstly to bring the ball to rest on the top of the arc and secondly 

to make the cart track a defined reference trajectory. Moreover, integral action is 

included in the developed block-backstepping control law to improve the steady-

state characteristics and to enhance the robustness of the overall system. 

Additionally, the internal stability of the nonlinear system has been analyzed 

using zero dynamic criteria to guarantee the global asymptotic stability at the 

desired equilibrium point. The performance of the designed control algorithm is 

assessed via simulated results. The results show that the block-backstepping 

controller designed for nonlinear system gives better transient performance than 

that designed for the linear system. Also, the nonlinear controller can cope with 

larger initial angular ball position without loss of stability. 
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1.  Introduction 

Underactuated Mechanical Systems (UMSs) are characterized by having fewer 

actuating inputs than controlled variables. Such systems can be shown in many 

applications like underwater vehicles, aircraft, mobile robot, inverted pendulum 

systems, helicopter, space robot and underactuated manipulator [1-3]. 

The ball and arc system is one of UMS with two DOF that has been proposed 

for demonstrating the basic concepts of modern control theory [4]. This system can 

be described by a ball that rolls on a top of an arc. The arc sits on a cart driven by 

a motor as depicted in Fig. 1. 

 

Fig. 1. Schematic representation of ball and arc system. 

The controller task of such system is to balance the ball on the boundary of the 

arc and to position the carriage, ball and arc assembly, at the midpoint of the track 

through an actuating motor [5]. Several approaches of control system were 

presented in the literature to control the ball and arc system, such as optimal control 

[6], T-S Fuzzy Model [7], optimal and disturbance-accommodating control [8], and 

sliding mode control [5]. 

During the period 1987-1989, the idea of integrator backstepping was proposed 

and developed by Koditschek [9], Sonntag and Sussmann [10], Tsinias [11], Byrnes 

and Isidori [12]. In 1989, Sontag and Sussmann had established the stabilization 

basis of backstepping via an integrator. Krstic et al. described in detail the adaptive 

and nonlinear Backstepping designs in 1995 [13]. The structure of backstepping 

compromises methods for parameter adaptation, tuning functions, and modular 

designs for both full state feedback and output feedback (observer backstepping). 

Recently, several researchers have attempted to reach more generalized 

backstepping algorithms that can successfully deal with the stabilization problems 

of complicated nonlinear systems. Block backstepping method is one of the most 

productive backstepping based algorithm. This control strategy can address the 

control problem of various nonlinear (MIMO) systems [14-19]. For the plant 

dynamic equations to be controlled through block-backstepping design, two 

conditions have to be satisfied [13]: 

 The first step of block-backstepping design, the dynamic equations are 

transformed into a block strict-feedback form.  
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 The second step; backstepping procedure may be applied to each state block 

to derive the expression of control input for the overall nonlinear system.  

The salient feature of block backstepping control strategy is that it can be 

applied to a class of systems whose dynamic equations are not in strict-feedback 

form, and it may also improve the problem of ‘explosion of complexity’ [18]. 

The motivation behind the present work is that the underactuated model of ball 

and arc system is not in a strict-feedback form and, also, it is characterized by high 

complexity. Therefore, backstepping design and control of the considered systems 

is a challenging problem, whose solution is the motivation of the work. 

This contribution of the work can be summarized by the following points: 

 A novel block-backstepping design is applied to solve the control problem 

of the ball and arc system. 

 The control problem is considered for two cases (linearized and nonlinear 

systems), where control structures are developed, derived and analyzed. In 

the case of the linearized model, the block-backstepping is designed to 

achieve the control objectives within the stabilization zone such that all 

states are ensured to converge to a defined trajectory. Then, another block-

backstepping design is presented to a nonlinear system based on the 

information from the design of the linearized system. 

 Lyapunov stability theorem is used to analyze the asymptotic stability of the 

overall system, while the internal stability of the dynamic equations is 

analyzed using zero dynamic criteria to achieve GAS at its desired 

equilibrium point. 

 Finally, integral action is included to improve the steady state performance 

of the controller.  

This is organized as follows; section two presents the modelling of ball and arc 

system. A novel block Backstepping control algorithm for the linearized system is 

developed in section three, while a novel development of block backstepping 

controller for the nonlinear system is given in section four. Zero dynamics and 

stability analysis are included in section five and six, respectively. The simulated 

results are presented in section seven. In section eight, conclusions based on 

simulated results have been drawn. 

 

2. Mathematical Model of Ball and Arc System 

2.1.  Nonlinear model 

In this sub-section, the mathematical model of the ball and arc system is set up 

using the Euler-Lagrange formulation [5]. 

    2

1 2 2 2 2
      cos sinM m q m R r q q q q F                     (1) 

   2 2

1 2 2 2
    cos ( ( )  ( )   sin 0)

R r
m R r q q m R r I q mg R r q

r


                   (2) 

2

12

1 1

 m m

a a

k k
F u q

R R R R
                   (3) 
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where, F  is the mechanical force applied to the cart, and u  is the control input (in 

volt) of the ball and arc system. In order to keep the ball on the arc, the centripetal 

force is assumed to be high such that the following condition has to be satisfied, 

  2

2 2
cos   0N mg q m R r q                     (4) 

where N is the normal reaction force due to the arc. The states of the system is 

described by the vector [
1

q  1p  2q  2p ], where 1q is the displacement of the cart 

mass center, 
1

p is the velocity of the cart, 2q  is the angular displacement between 

the vertical and the line through the center of the ball 
b

O  and the center of the arc 

a
O , and 

2
 p is the angular velocity of the ball. Then, the above equations can 

formulate as follows: 

1 1
q p  

 

2

2 2

1 12 22 2 2 12 2 2 22 12

1 1

1
sin sin cos m m

a a

k k
p m m p q m g q q m u p

q R R R R

  
      

  

 

2 2
q p                    (5) 

 

2

2 2

2 11 12 2 12 2 2 2 12 2  12

1 1

1
  sin sin cos   cos m m

a a

k k
p m m g q m p q q m q p

q R R R R

  
      

  

 

where, 

11 12 2

21 2 22

cos

cos

m m q
M

m q m

 
  
 

, 
11

m M m  ,   12 21
 m m R r m    

 
2

2

22
,

R r
m m R r I

r

 
    

 

   
2

2 2 2

11 12 2
sin 0

R r
q m I Mm R r m q

r


 
     

 
 

It is noteworthy to mention that the control objectives are not only to maintain 

the ball to stable on the top of the arc, but also the cart achieves the trajectory 

tracking of the defined reference trajectory. 

 

2.2. Linearized model 

The nonlinear system in Eq. (5) was linearized nearby the equilibrium point 

 ,   0. q p  In order to realize and analyze the properties of the ball-arc system, the 

disturbance was ignored for simplicity [20]. 

1 1
q p 

2

2 22 22

1 12 2 12

1 1

1
   m m

a a

m k m k
p m gq p u

h R R R R

 
    

 
 

2 2
q p                    (6) 

2

12 12

2 11 12 2 12

1 1

1
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m k m k
p m m gq p u

h R R R R
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where, 

11
m M m  ,  

2

2

22
 

R r
m m R r I

r

 
    

 
,  12 21
    m m R r m   ,

 
2

2

11
 

R r
h m I M m R r

r

 
   

 
 

3.  Control Design Algorithm for Linearized Model 

The block backstepping control algorithm for the linearized version of the system 

is proposed to achieve the control objectives within a stabilization zone in the 

neighbour of equilibrium point [21]. The block diagram of the closed-loop system 

is shown in Fig. 2. 

 

Fig. 2. The block diagram of block backstepping 

based control for ball and arc system. 

The next steps include the design procedure for the application of block-

backstepping control to Linearized model: 

Step 1: The regulated variable is first introduced as  

 1 2 1 2 12 22 2
     z q k e k m e m p                    (7) 

1 1d
e q q                    (8) 

1 1d
e p q                    (9) 

where, 
1

k  and 
2

k  are design constants. Taking the derivative of 
1

z  to have: 

 1 2 1 2 12 22 2
z q k e k m e m p                  (10) 

or, 

1 2 1 2 12 2 2 12 1
   

d
z p k e k m g q k qm                  (11) 

The state variable 
2

p  is taken as a virtual control variable, for which the 

following stabilizing function is chosen 

1 1 1 1 1 2 12 2 2 12 1
 

d
k e c z k m gq k m q                                              (12) 

where 
1

c  is a positive design constant and   is a real-valued design constant. The 

integral action of the regulated variable is incorporated with the controller to 

Block Backstepping
Control

Ball and 
Arc System 

Integral Action 
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guarantee the convergence of the regulated variable to zero at steady state in the 

presence of the disturbances and inaccuracy of the system. 

1 1
0

t

z dt                   (13) 

The corresponding error variable is defined as 

2 2
z p                   (14) 

Consequently, the time derivative of 1z  is expressed as following 

1 2 1 1 1 1
z z c z                    (15) 

Step 2: The derivative of 
2

z  is computed as follows: 

2 2
z p                   (16) 

1 1 1 1 1 2 12 2 2 12 1
       

d
k c z z k m g qe qk m                    (17) 

One can show that Eq. (16) can be given by 

 2 1 1 1 2 1 1 1 1
 z u z c z c z                       (18) 

where,   and   is given by  

 1 22 12

1

          m

a

k
k m m

R R h
  

2 2

212  1 22  11

11 12 2 1 12 2 2 12 2 1 2 122 2

1 1

 1
(   ) (     )      

 

m m

d d

a a

k m p k m pk
g m m q h g m q gk m p q k m

R
q

h R h R R
         

The desired dynamics of 
2

z  is expressed as follows: 

2 1 2 2
z z c z                   (19) 

Substituting Eq. (19) into Eq. (18) and solving for the control signal to achieve 

the desired dynamics of the 
1

z  and 
2

z  the linear controller is obtained: 

1 2

1 1 1 1 2 2 1 1 1
(1 ( )( ) )u c z c c z c                        (20) 

where   is invertible, 2c  is a positive design constant. The stability of the system 

is analyzed based on the following Lyapunov function; 

2 2 2

1 2 1 1

1 1 1
   

2 2 2
V z z                    (21) 

From Eq. (11) to Eq. (20), the time derivative of Eq. (21) is determined as 

follows: 

1 1 2 2 1 1 1
 V z z z z                     (22) 

    1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1
  z z c z z z u z c z c z                   

Then, the following inequality can be concluded 

2 2

1 1 2 2
0V c z c z                   (23) 
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It is evident from the above equation that the inequality ( ) (0)V t V  is verified 

and, hence, the states 
1

 ,
1

 z  and 
2

z  are bounded and consequently 
1 2
,  z z  are also 

bounded. The second derivative of a Lyapunov function can easily be computed as: 

1 1 1 2 2 2
2     2    c z z c zV z                  (24) 

Since 
1

z , 
2

z , 
1

z  and 
2

z  are all bounded, therefore, V  is also bounded. 

Barbalat’s Lemma can be applied to show that both 
1

z  and 
2

z  converge to zero as 

t → ∞. The zero dynamic of the system is computed as follows: 

1 2

0 1 0e e

a ae e 

      
       

      
               (25) 

where, 

   

2

12 1 12 2

1 2

1 22 12 1 22 12

,    
m gk m k g

a a
k m m k m m

 
 

, 
 

  12 1 2 22 1

1 22 12

1
      

d d
m q k m q

k m m
  


 

The matrix is a Hurwitz matrix if 
1

a  and 
2

a  are less than zero. So that 
1

k  and 

2
k  are chosen to satisfy the following inequalities: 

2
0k  ,         12

1

22

0
m

k
m

                 (26) 

Then the states 
1

q  and 
1

p  will converge to zero. Hence, the proposed control 

law guarantees the global stabilization of the ball and arc system. 

 

4.  Control Design Algorithm for Non-Linear Model 

In a previous analysis, Lyapunov stability analysis has been applied to synthesize 

a block-backstepping controller for the linearized system described by Eq. (6). 

However, if the same controller in Eq. (20) is applied to the original system in Eq. 

(5) then it is expected to work well only nearby the equilibrium points within the 

stabilization zone. Therefore, it is necessary to design a novel block backstepping 

controller for a nonlinear system, which can cope with system complexity and can 

bring the ball to rest on the top of the arc starting outside the stabilization zone. In 

this complex nonlinear model, the key point is to choose a suitable initial nonlinear 

regulated variable. Thus, the regulated variable in the previous procedure is 

considered, here again; then the regulated variable is continuously updated until 

finding an appropriate variable. Therefore, the design concept used for the 

linearized system is extended to design the complete nonlinear system. The 

regulation variable is modified from the physical and math structure for designing 

nonlinear controller. The design procedure of application of blockstepping control 

design to nonlinear model can be is summarized as follows: 

Step 1: The variable to be regulated is chosen as: 

 3 2 3 4 12 2 22 2
cosz q k e k m q e m p                 (27) 

1 1d
e q q                  (28) 

1 1d
e p q                  (29) 
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where k3 and k4 are design constants. Then, one can obtain the time derivative of z3 as: 

 3 2 3 4 12 2 2 12 2 22 2
sin cosz q k e k m q q e m q e m p       

The above equation can be given as, 

   

¨

13 2 3 4 12 2 2 12 2

3

12 2 2 11 12 22 2

  sin cos

0.5   sin 2 cos        sin
)

(
d

z p k e k m ep q m q q

m g q q m m m g q

q q 

    

 
            (30) 

The following stabilizing function has been chosen in the design procedure; 

 

   

3 4 12 2 2 4 12 2 1 3 3 2 1

3

4 12 2 2 4 11 12 22 2

sin cos  

0.5      sin 2 cos   sin

d
k k m p q e k m q q c z

g k m q q g k m m m q

q q

  

 

     

 
           (31) 

where 
3

c a positive design is constant,
2

   is a design constant. The integral action 

of the regulated variable is defined as: 

1 3
0

t

z dt                   (32) 

The corresponding error variable is defined as 

4 2
 z p                   (33) 

Consequently, the time derivative of 
3

z  is expressed as follows: 

3 4 3 3 2 1
   z z c z                    (34) 

Step 2: The time derivative of 
4

z  is computed as follows: 

4 2
z p                   (35) 

Using Eqs. (5) and (35) one can show, after long calculation, that 

 4 2 3 3 4 3 3 2 1
  z u z c z c z                      (36a) 

where   and   are given by: 

 
    3 4 12 2 2 22 4 12 2 12 2

1

sin 1 sin cosm

a

k
k k m p q m k m e q m q

q R R



              (36b) 

       

 

 

 

 

 

 

22 3 2 3 3 4 12 2 2

4 12 2 22

2
2 2 22 1

1 2 2 12 22 2 12 2 2

1

2
2 24 12 1 12 1 2

11 12 2 12 2 2 2 2

1

sin
  cos

   
  cos sin sin  

 

1      sin     cos
  sin   cos sin

 

m
d

a

m

a

q q k k m p q
k m p q

qq

k m p
q q g q q m m q m p

R R

e k m q k m p q
g m m q m p q

e

q
q R R


     







   
 

 
    
 

  
 







1 4 12 2 2 1 4 12 2      sin   cos   d dq k m p q q k m q




 

           (36c) 
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 

2 4 11 12 22 2

3

3 4 12 2 2

2 4 11 12 22 2 2

3 3

3 4 12 2 2 2 4 12 2 2 2

2

12 2

sin

  0.5 sin 2 cos

  cos

0.5 sin 2 sin cos2 cos

sin 2

k m m m g q

k m g q q

k m m m gp q

k m gp q q k m gp q q

q m q











 



 

  



          (36d) 

The desired dynamics of 
4

z  can be given by the following expression 

4 3 4 4
z z c z                   (37) 

Substituting Eq. (37) into Eq. (36) and solving for a nonlinear controller, which 

can achieve the desired dynamics of, 3z  and 4z  to have, 

    1 2

3 2 3 3 4 4 2 3 11  u c z c c z c                        (38) 

It is clear from nonlinear controller described by Eq. (38) is more complex than 

that obtained for linearized system indicated by Eq. (20); the nonlinear controller 

contains nonlinear terms represented by cos q2 and sin q2, while the controller based 

on the linearized model is simpler and free from nonlinear terms. 

 

5.  Zero Dynamics Analysis 

It is worthy to mention that the control input given by Eq. (38) does guarantee the 

stability of transformed variables z2 and z4. Meanwhile, algebraic state transformation 

defined by Eqs. (27) and (34) transforms the nonlinear dynamic equations of the plant 

into a reduced order state model described by z2 and z4.. In other word, the state 

transformation results in a second-order internal dynamics [22]. 

If the variable  z3 is considered as the system output and it is differentiated twice, 

then the following will result: 

3 4 3 3 2 3  z z c z z   2 3 3 3 1 3 2 3 u z c z c z z          

3    z u                   (39) 

The setting z3 = 0, then from Eq. (27) one can get 

 3 2 3 4 12 2 22 2  cos 0z q k e k m q e m p      

or 

 2 3 4 12 2 22 2  cosq k e k m q e m p                 (40) 

Since z3 = 0 it is logical that 
3 0z   and the following expression can be obtained 

based on Eq. (30) 

 

3

12 2 2
2 3 4 12  2 2 12 2 1

0.5    sin 2 cos
sin cos d

gm q q
p k e k m ep q m q q

q    



  

11 12 22 2  sinm m m g q

q





     (41) 

Also, 
3 0z   to have, 

3 0 z u     

or, 



Design of Block-Backstepping Controller to Ball and Arc System . . . . 2093 

 
 
Journal of Engineering Science and Technology               July 2018, Vol. 13(7) 

 

1u                    (42) 

Therefore, one can represent the dynamics of 
1q  and 

1p  subsystem together 

with the input u  in Eq. (42) as, 

   

1 1

1

1 1 1 1 1 1 1 3, 0

q p

p f g u f g F q p z 



     
            (43) 

It is evident from the expressions of ,   ,  , 
2q  and 

2p  in Eqs. (36b), (36c), (40) 

and (41) that it depends on the choice of the suitable parameter k , for this reason 

after substitute Eqs. (36b), (36c), (40) and (41) the zero dynamics in Eq. (43) solely 

depend on the parameter k  to ensure desired characteristics of internal stability. 

 

6.  Stability Analysis 

Lemma 1: For the nonlinear ball and arc system, the control input in Eq. (38) can 

perform a trajectory tracking of the defined reference trajectory. In particular, for 

any initial conditions 
1 1 2 2[ (0)   (0)   (0)   (0)]q p q p , the trajectory tracking errors 

2 2[ ( )   ( )    ( )    ( )]e t e t q t p t  guarantees GAS as t   under the operation of the control 

input law expressed in Eq. (38). 

Proof: The proof of Lemma 1 can be decomposed into three steps. Firstly, the 

asymptotic stability of the closed-loop system described by Eqs. (34) and (36) has 

to be proved and ensured under the developed control action. Secondly, it has to be 

shown that the states variables describing the nonlinear model Eq. (5) should 

converge to zero as t  . The last step of proof is to show and ensure that the 

globally asymptotic convergence to zero. 

The first step is verified by suggesting a Lyapunov function candidate given by; 

2 2 2

3 4 2 1

1 1 1
   

2 2 2
V z z                    (44) 

Differentiating both sides of Eq. (44) along with the solutions of the system 

described by Eqs. (32), (34) and (36) which results in: 

2 2

3 3 4 4 0V c z c z                   (45) 

It is clear from the above equation that the inequality ( ) (0)V t V  is verified 

and, hence, the states 
1 ,

3 z  and 
4z  are bounded and consequently 

3 4, z z  are also 

bounded. The second derivative of a Lyapunov function can easily be computed as: 

3 3 3 4 4 42     2    c z z c zV z                  (46) 

Since 
3z , 

4z , 
3z  and 

4z  are all bounded, therefore, V  is also bounded.  

Barbalat’s Lemma can be applied to show that both 
3z  and 

4z  converge to zero as 

t  . Since the zero convergence of 
3z  has been already confirmed and the 

parameters 
3k  and 

4k  are merely constants, then The GAS of the zero dynamic in 

Eq. (43) indicates that the 
1q  and 

1p  will asymptotically converge to desired 

reference trajectory. Since 
1q  and 

1p  are orthogonal to each other, additionally, 

from Eqs. (28) and (29) as t   indicates: 
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 1 1lim lim 0dt t
e q q

 
                   (47) 

 1 1 lim lim 0 dt t
e p q

 
                  (48) 

From Eqs. (47) and (48) the convergence of ,   e e to zero as t   has been 

proved, from Eq. (27) the following can be concluded; 

 2 3 4 12 2 4 22 2lim lim     cos     0
t t

q k e k m q e k m p
 

                 (49) 

Equations (31) and (33), lead to the following reasoning; 

2lim lim 0
t t

p 
 

                 (50) 

Therefore, the convergence of e  and e  to zero as t   this leads to the fact 

2 4 22 2    0q k m p                  (51) 

The above Eq. (51) must converge to zero when 
3z  converges to the zero. Since 

2q  and 
2p  are orthogonal to each other. Then the individual element 

2q  and 
2p  

must converge to zero as t  . Hence, the proposed control law guarantees the 

global stabilization of the ball and arc system. 

7.  Simulation Results 

In this section, the developed block-backstepping algorithms are implemented, 

for both linearized and nonlinear system, within the environment of MATLAB 

software. The MATLAB code is developed inside an M-file and 4th order Runge-

Kutta are used for the numerical solution. It has been shown that 0.01 second 

sampling time is appropriate to guarantee the stability of the numerical solution 

and to give suitable plot resolution. The appropriate and model of ball and arc 

system using MATLAB package. The numerical physical parameters of the 

system are listed in Table 1. 

Table 1. Physical parameters of ball and arc system [5]. 

System parameter Value 

Mass of the cart and arc (M) 2 

Mass of the ball (m) 0.05 

Gravitational acceleration (g) 9.81 

Moment of inertia of the ball (I) 2.88  10-6 

Radius of the ball (r)  
Radius of the arc (R) 0.08 

Motor constant ( )mk  0.0534 

Radius of the pinion (R1) 0.08 

Motor armature resistance (Ra) 1.6979 

Also, the numerical values of design parameters used through the design of 

block-backstepping control algorithms are chosen as given in Table 2. For the 

linearized system 
1c  and 

2c  are selected based on Eq. (23) to make V  negative 

definite. Additionally, 
1k  and 

2k  indicated in Eq. (26) has been chosen to 
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guarantee the GAS of zero dynamic in Eq. (25).   is a positive design constant. 

For non-linear system 
3c  and 

4c  are selected according to Eq. (45) to make V  

negative definite. The value of 
3k  and 

4k  in Table 2 make the zero dynamics in 

Eq. (43) to behave as a stable focus as indicated in Fig. 3. 

 

Fig. 3. The phase portrait. 

Table 2. Design constant of block backstepping controller. 

Design 

constants 

 

Value 

Design 

constants 

 

Value 

k1 0.05 k3 0.05 

k2 15 k4 8 

c1 2 c3 5 

c2 90 c4 35 

1    2    

Firstly, the initial conditions used to start the simulation for both non-linear and 

linearized systems, based on their associated block backstepping controllers, are set 

to
1 1 2 2[     (0)    (0)    (0)]  [0    0     0.523(0)      0]T Tq p q p  . 

Figures 4(a) and 4(b) show that cart position and velocity responses reach the 

steady state in 12 and 5 seconds for both systems, respectively. However,  the 

angular and velocity of ball reach the equilibrium point in 1.5 and 3 seconds for the 

nonlinear and linear controller, respectively, as indicated in Figs. 4(c) and 4(d). The 

controller actuating signals is shown in Fig. 4(e). The behaviours of force action 

for both controlled systems are illustrated in Fig. 4(f). 

The tracking performance of both controllers for their associated systems and 

for the above initials are depicted in Fig. 5. The figure shows that both controllers 

perform well for this particular initial states such that they could stabilize the ball 

angular position to zero angle location. However, the nonlinear controller shows 

better transient characteristics than the linear one. To observe the performance of 

both controllers for a larger initial deviation of the ball, the initial condition of states 

are set to the following initial state vector: 

1 1 2 2[     (0)    (0)    (0)]  [0    0    1  .22     0](0) T Tq p q p   
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(a) Cart displacement. 

 

(b) Cart linear velocity. 

 

(c) Ball angular position. 
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(d) Ball angular velocity. 

 
(e) Control input. 

 
(f) Behaviours of force actions. 

Fig. 4. Responses of the system for a small initial deviation of the ball. 
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(a) Cart displacement. 

 

(b) Cart linear velocity. 

 

(c) Ball angular position. 
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(d) Ball angular velocity. 

 

(e) Control input. 

 

(f) Error between actual and desired. 

Fig. 5. Tracking performance with a small initial deviation of the ball. 

It is clear that the initial state q2(0) is far away from the equilibrium state. The 

block-backstepping controller designed for the linearized system has failed to 

stabilize the system and even worse its relevant responses increased without 

binding. On the other side, the block-backstepping controller could successfully 
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bring the states to equilibrium point and guarantee the system stability as indicated 

in Figs. 6(a) and 6(b). 

The effectiveness of integral action on the robust characteristics, dynamic 

behaviour and steady-state error have been assessed for the only backstepping 

controller of the nonlinear system. Figure 7 has investigated the cases of including 

and excluding the integral action to the block-backstepping controller of a non-

linear system for the first initial condition q2(0) =0.523. It is clear that the addition 

of integral action could confine the excursions of cart displacement and ball angular 

position to lower levels. 

In Fig. 8, a disturbance pulse of height 0.5 N is exerted to the system during the 

period (20-20.1) seconds. The effect of applied disturbance on the controlled 

system has been shown in Fig. 9. It is clear from this figure that the presence of 

integral action could enhance the robustness of the nonlinear-controlled system in 

the presence of parameter variation (disturbance). The effect of the integral action 

on steady-state characteristics has been evaluated by calculating the steady-state 

error at the end of runtime. In the presence of integral action, it is found that the 

steady state error of the cart displacement is equal to 2.53 mm, while that for ball 

angular position is equal to 0.000617 rad. On the other hand, in the absence of 

integral action and using the same parameters of Table 2, it has been shown that 

the steady state for cart displacement is equal to 17.49 mm and that for ball angular 

position is equal to 0.00301 rad. 

 

(a) Cart displacement. 

 

(b) Ball angular position. 

Fig. 6. The performance of block-backstepping controller 

for nonlinear system with a large initial ball deviation. 
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(a) Cart displacement. 

 

(b) Ball angular position. 

Fig. 7. The performance of block-backstepping controller 

for nonlinear system with and without integral action. 

 

Fig. 8. Force action during the period (20, 20.1). 

 



2102       A. J. Humaidi et al.  

 
 
Journal of Engineering Science and Technology               July 2018, Vol. 13(7) 

 

 

(a) Cart displacement. 

 

(b) Ball angular position. 

Fig. 9. The robustness examination of the block-backstepping 

controller for the non-linear system under disturbance 

with and without integral control action. 

 

Fig. 10. Behavior of normal reaction force. 

It is interesting to show the behaviour of the normal reaction force (N) satisfying 

the condition of Eq. (4). This force dynamic is depicted in Fig. 10. 

8.  Conclusions 

In this work, the design of block backstepping algorithm is developed for both 

nonlinear and linearized versions of ball and arc system. The simulated results 

showed that in spite that both structures of designed controllers perform well for 
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solving both regulation and tracking problem, the block backstepping designed for 

the considered nonlinear system can cope with a larger excursion of the ball and can 

bring the desired state to equilibrium point in asymptotically stable manner. On the 

other hand, the block-backstepping controller based on integral action could enhance 

both steady-state characteristics and closed system robustness. 

 
 

Nomenclatures 
 

ci Positive design constants for the controller 

F The force applied to the cart, N 

g Gravitational acceleration, m/s2 

I Moment of inertia of the ball, kg/m2 

ki Design constants for the controller 

km Motor constant, N m/A 

M Mass of the cart and arc, kg 

m Mass of the ball, kg 

Oa The center of the arc 

Ob The center of the ball 

p1 The velocity of the cart, m/s 

p2 The angular velocity of the ball, rad/s 

q1 The displacement of the cart, m 

q2 The angular displacement, red 

R Radius of the arc, m 

Ra Motor armature resistance, ohm 

R1 Radius of the pinion, m 

r Radius of the ball, m 

u The control input of the ball and arc system, V 
 

Greek Symbols 

 Arbitrary positive design constant 

 Stabilizing function 

  
 

Abbreviations 

DOF Degree of Freedom 

GAS Global Asymptotic Stability 

MIMO Multiple Input Multiple Output 

T-S Takagi Sugeno 

UMSs Underactuated Mechanical Systems 
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