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Abstract

Over the past decade, biology has undergone a data revolution in how researchers collect

data and the amount of data being collected. An emerging challenge that has received

limited attention in biology is managing, working with, and providing access to data under

continual active collection. Regularly updated data present unique challenges in quality

assurance and control, data publication, archiving, and reproducibility. We developed a

workflow for a long-term ecological study that addresses many of the challenges associated

with managing this type of data. We do this by leveraging existing tools to 1) perform quality

assurance and control; 2) import, restructure, version, and archive data; 3) rapidly publish

new data in ways that ensure appropriate credit to all contributors; and 4) automate most

steps in the data pipeline to reduce the time and effort required by researchers. The work-

flow leverages tools from software development, including version control and continuous

integration, to create a modern data management system that automates the pipeline.

Introduction

Biology has transitioned from a field in which data are collected in hand-written notes by lone

scientists to a discipline that increasingly involves large amounts of data collected by collabora-

tive teams. The impact of the increased volume of data being collected has been extensively dis-

cussed in biology [1,2], but there has also been a revolution in the frequency with which data

are collected [3]. Instead of one-time data collection, biologists are increasingly collecting data

that require databases to be regularly updated with new information. Long-term observational

studies, experiments with repeated sampling, use of automatic sensors, and ongoing literature

mining to build data compilations all produce continually updating data. These data are being

used to address problems that require regularly updating data streams, including adaptive

monitoring and management [4], iterative near-term forecasting [5], detecting and preventing

ecological transitions [6], and monitoring real-time cancer metabolism [7]. Thus, whether

studying changes in gene expression over time or long-term population dynamics, data that
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are being analyzed while they are still undergoing data collection are becoming a pervasive

aspect of biology.

Data that are frequently updated present unique challenges for effective data management,

reproducibility, and credit. Regularly updated data (Box 1) requires continual data entry, data

integration, and error checking. This need for continually active data management places an

extra burden on researchers and increases the potential for delays between when data are col-

lected and when they are available to analyze. Since the data are continually changing, it is also

essential to have methods for tracking, comparing, and archiving different versions of the data

to support reproducibility [1,8]. Finally, since new contributors often join ongoing projects, a

method is needed that provides credit to new contributors while still allowing the impact of

the project as a whole to be tracked. While strategies for managing large amounts of actively

updated data exist in biology, they are typically limited to large, institutionalized data collec-

tion efforts with dedicated informatics groups. To reduce delays and burden on individual labs

and small teams, researchers need accessible protocols that promote rapid, ongoing data entry,

versioning, archiving, and documentation.

As a small group of researchers managing an ongoing, long-term research project, we have

grappled with the challenges of managing data that is regularly updated and making it publicly

available. Our research involves automated and manual data collection efforts at daily to

annual frequencies conducted over 40 years by a regularly changing group of personnel

(Box 2; for details on our study and data collection see [9]). Thus, our experience covers much

of the range of challenges that biologists are struggling to manage when their data are continu-

ally being updated. We designed a modern workflow system to expedite the management of

data streams, ranging from hourly data collected by automated weather stations to plant and

animal data recorded on datasheets in the field. We have designed our process to mitigate the

data management workload by automating much of the data management pipeline. We use a

variety of tools that range from those commonly used in biology (e.g., Microsoft Excel and

programming in R) to tools that have primarily been used in only the highly computational

areas of biological research (e.g., version control and continuous integration; for more infor-

mation see S1 Box and S2 Box, respectively). We use these tools not only to help with the regu-

lar addition of new data but also to provide clear documentation when we find and fix existing

errors in the database that evaded earlier quality assurance/quality control (QA/QC) proce-

dures. Here, we describe our approach with the goal of allowing others to implement similar

data management systems and to improve the data management of regularly updated data

more broadly.

Box 1. Terminology

This regularly updated biological data differs from conventional “streaming data” in that

it typically involves manually collected data, requires data entry, and is not truly continu-

ous in nature. This type of data has been referred to by a variety of terms including

“dynamic data” [37], “evolving data” [38,39,18], and “living data” [40], but there is no

general consensus on the appropriate terminology. To communicate more effectively

across these different groups, we chose to simply describe the key aspect of this data that

makes it a challenge to work with: the fact that this is data under continuing data collec-

tion that results in frequent updating of data files.
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Implementing a modern data workflow

Setting up an automated data management system for regularly updated data may initially

seem beyond the skill set of most empirically focused lab groups. The approach we have

designed and describe below does require some level of familiarity with computational tools

such as a programming language (e.g., Python or R) and a version control system (e.g., git).

However, data management and programming are increasingly becoming core skills in biol-

ogy [10], even for empirically focused lab groups, and training in the tools we used to build

our data management system is available at many universities or through workshops at confer-

ences. In designing and building the infrastructure for our study, our group consisted primar-

ily of field ecologists who received their training in this manner and sought assistance from a

computational ecologist for help with design and implementation of some of the more

advanced aspects. We have aimed this paper and our associated tutorial at empirical groups

with little background in the tools or approaches we implemented. Our goal is to provide an

Box 2. The model system for this paper

Our data are generated by the Portal Project, a long-term study in ecology that is cur-

rently run by our research group [9]. The project was established by Dr. James H. Brown

in 1977 in the southwestern United States to study competition among rodents and ants

and the impact of these species on desert plants [41]. We collect data for several datasets

that regularly update at different frequencies (hourly, monthly, biannually, and annu-

ally), and each data set presents its own challenges.

Low-frequency, sample unit–level plant data

We collect, on paper data sheets, information on the number of plant individuals per

sampling quadrat but do not track particular individuals through time. These data are

the least intensive to manage because data entry and quality control activities are more

concentrated in time, and there are fewer potential issues for us to check.

High-frequency, individual-level rodent data

These data are time intensive to manage because they are recorded monthly on paper

data sheets and require extra quality control efforts to maintain accurate individual-level

data.

Highest-frequency, automated weather data

We also collect weather data, generated hourly, which we download weekly from an

automated weather station at the field site. Because we do not transcribe these data,

there are no human-introduced errors. We perform weekly quality control efforts for

these data to detect any issues with the sensors, including checking for abnormal values

and comparing output to regional stations to identify extreme deviations from regional

conditions.

Given the variety of data that we collect, we require a generally flexible approach for

managing the data coming from our study site. The diversity of regularly updating data

that we manage makes it likely that our data workflow will address many of the data

management situations that biologists collecting updating data regularly encounter.
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introduction to the concepts and tools, general information on how such a system can be con-

structed, and assistance—through a tutorial—for building data management systems to man-

age regularly updating data. Box 3 contains a recipe for implementing our approach. Readers

can also peruse our active data repository (www.github.com/weecology/PortalData) to see

details of how we constructed our pipeline.

QA in data entry

For data collected onto data sheets in the field or the lab, the initial processing requires human

interaction to enter the data. Using tools and approaches that automatically check data for

errors can make this process more efficient. Upon returning from the field, two different peo-

ple manually enter the new data into Excel spreadsheets (Fig 1, step 1). We use the “data vali-

dation” feature in Excel to restrict possible entries as an initial method of quality control by

restricting accepted species codes to those on a prespecified list and defining allowable ranges

for numeric values. The two separately entered versions are compared to each other using an

R script to find errors from data entry (Fig 1, step 2). The R script detects any discrepancies

between the two versions and returns a list of row numbers in the spreadsheet where these dis-

crepancies occur, which the researcher then uses to compare to the original data sheets and fix

the errors.

Adding data to the central database

When data are regularly updated, often by multiple researchers, it is essential to have a central

version of the database with all of the most current data. We store our data in comma sepa-

rated values (csv) files in a system designed for managing and tracking changes to files called

version control. Version control was originally designed for tracking changes to code but can

track changes to any digital file, including data files [11–13]. We use a specific version control

system—git—and the associated GitHub website (Fig 1, “GitHub and Continuous Integra-

tion”) for managing version control (see S1 Box for more details). We store the master version

of the data files online on GitHub (https://github.com/weecology/PortalData). The data, along

with the code for data management, are stored in the version control equivalent of a folder,

Box 3. Recipe for creating a regularly updating data pipeline

Visit https://www.updatingdata.org/ for click-through instructions on how to follow this

recipe to build a regularly updating data repository.

1. Clone the livedat repository

2. Configure the repository for your project

3. Connect to Zenodo

4. Connect to Travis

5. Give Travis access to update your data on GitHub

6. Add data

7. Add quality assurance/quality control (QA/QC) code

8. Update data
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called a repository (Fig 1, “Main Data Repository”). Through this online repository, everyone

in the project has access to the most up-to-date or “master” version of both the data and the

data management code. To add or change data in this central repository, we create a copy of

the repository on a user’s local computer, which we then edit, save any changes along with a

message describing the changes, and send a request through GitHub (called a “pull request”;

Fig 1, step 3) to have these changes integrated into the central repository (S1 Box). While any

user can suggest a change or addition, only select individuals have the authority to merge these

changes into the central version (see S1 Box). This version control based process retains rec-

ords of every change made to the data along with an explanation of that change [11–13]. It also

makes it possible to identify changes between different stages and to go back to any previous

state of the data. As such, it protects data from accidental changes and makes it possible to

track the provenance of the data.

Automated data checks

Automating data checks (i.e., QA/QC) are essential for efficiently delivering regularly updated

data of high quality. We automate a variety of aspects of our data management system, includ-

ing the data checks, by using “continuous analysis” (sensu [14]), an approach for automating

computational analyses. Continuous analysis uses “continuous integration” tools from

Fig 1. Data workflow for regularly updated data. 1. All field-collected data are double entered with automated checks to prevent invalid values from being entered. 2.

The two versions of the double-entered data are compared using an R script, and mismatches are corrected. 3. A pull request is submitted to the data repository (i.e.,

GitHub), which triggers data checks run by the continuous integration system (i.e., Travis CI). 4. If the system detects any issues, the update is reviewed again, and

corrections are made to the pull request, automatically triggering the data checks to run again. 5. Once the new data pass all automated checks, a data manager reviews

the changes and merges the new data into the main data repository. 6. Addition of the new data triggers the continuous integration system to run additional scripts to

get data from automated sensors (e.g., weather data) and to check for errors. 7. The system then runs scripts that automatically update the supporting tables

(information not collected in the field that helps with data use) and updates the version number. 8. Once all tables have been automatically updated, the updates are

automatically merged into the main repository. 9. The system automatically triggers a new release on GitHub. 10. The GitHub–Zenodo integration sends the new data

release as a new version to Zenodo for archiving. CI, continuous integration.

https://doi.org/10.1371/journal.pbio.3000125.g001
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software engineering to automatically run a set of commands (in our case, this includes R code

that is run to error check new data) when data or code is updated or at user-specified times

([14]; see S2 Box). Continuous integration systems (we use Travis CI; https://travis-ci.com/)

are designed to interact with version control systems, which makes it relatively easy to auto-

mate QA/QC checks of the data [15]. When a “pull request” to add new data to the central

database is submitted, it automatically triggers the continuous integration system to run a pre-

determined set of QA/QC checks. The QA/QC checks the validity and consistency of the new

data (e.g., do data for all samples exist, are data values that should be similar through time self-

consistent). This QA/QC system uses a software-testing approach called “unit testing” that is

typically used to check that pieces of code work in the expected way [16]. We use tests, written

using the “testthat” package, to do our unit testing [17]. Any identified issues with the data are

automatically flagged in the pull request, indicating that they need to be fixed before the data

are added to the main repository (Fig 1, step 4). The researcher then identifies the proper fix

for the issue, fixes it in their local copy, and updates the pull request, which is then automati-

cally retested to ensure that the data pass QA/QC (Fig 1, step 3).

Human review and updating the central database

Human review of data updates is useful for identifying issues that are difficult to detect

programmatically. Before field data are merged into the main repository, we require human

review of the proposed changes by someone other than the researcher who initiated the pull

request. This review is facilitated by the pull request functionality on GitHub, which shows the

reviewer only the lines of data that have been changed [11]. Once the changes have passed

both the automated tests and human review, a data manager confirms the merge, and the

changes are incorporated into the main version of the database (Fig 1, step 5). Records of all

merged pull requests are retained in git and on GitHub, and it is possible to revert to previous

states of the data at any time.

Automatically integrating data from sensors

Many data collection efforts in biology involve some sort of automated data collection. We col-

lect hourly weather data from an on-site weather station that transmits data over a cellular con-

nection; we also download data from other weather stations in the region whose data are

streamed online. While data collected by automated sensors do not require steps to correct

human-entry errors, they still require QA/QC for sensor errors, and the raw data need to be

processed into the most appropriate form for our database. To automate this process, we

developed R scripts to download the data, transform them into the appropriate format, run

QA/QC checks, and automatically update the weather table in the main repository (Fig 1, steps

6 and 8). The continuous integration system is scheduled to regularly download and add new

weather data. Errors identified by the QA/QC checks will cause our continuous integration

system to register an error, indicating that the data require human attention before being

added to the main repository (similar to the QA/QC process described in Fig 1, steps 3 and 4).

This process yields fully automated collection of weather data in near-real time.

Automated updating of supporting tables

Once data from the field are merged into the main repository, there are often supporting data

tables that need to be updated. Supporting tables contain information (e.g., about data collec-

tion events such as sampling intensity or timing) that cannot be efficiently stored in the main

data file. Since this information can be derived from the entered data, we have automated the

process of updating supporting tables in order to reduce the time and effort required to
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incorporate new sampling events into the database (Fig 1, steps 7 and 8). For each table that

needs to be updated, we wrote a function to 1) confirm that the supporting table needs to be

updated, 2) extract the relevant information from the new data in the main data table, 3) per-

form data checks, and 4) append the new information to the supporting table. The update pro-

cess is triggered by the addition of new data into one of the main data tables, at which point

the continuous integration service executes these functions (see S2 Box). Automating curation

of these supporting tables reduces the potential for data entry errors and allows researchers to

allocate their time and effort to tasks that require intellectual input.

Versioning

A common issue with data sets that are regularly updated is that the data available at one point

in time are not the same as the data at some point in the future, which can cause difficulties for

reproducing and comparing analyses [11,13]. Creating distinct versions of the database every

time it changes and timestamping those versions allows analyses that can be run on a specific

version of the data [18,13]. To address this issue, we automatically make a “release” every time

new data are added to the database (using the GitHub application programming interface

[API]; Fig 1, step 9). This allows specific versions of the data used for an analysis to be refer-

enced directly, and the exact form of the data can be downloaded to allow fully reproducible

analyses even as the data set is continually updated. Versions are named following the newly

developed Frictionless Data data-versioning guidelines (https://frictionlessdata.io/specs/

patterns/; see [13] for a similar approach).

Archiving

Satisfying journal and funding agency data requirements increasingly requires depositing data

in an archive that guarantees stable long-term availability of data under an open license.

GitHub repositories can be deleted at any time and therefore cannot serve as an archive

[19,20]. Regularly updated data need an archive that supports easily automated archiving, data

versioning, and DOIs for citation. In some fields, disciplinary repositories are the best choice

for archiving some kinds of data, but often, these repositories do not support automatic updat-

ing. We archive our data with a Creative Commons 0 (CC0) license on Zenodo (https://

zenodo.org/), a widely used general purpose repository, because it provides all of the necessary

components. With its easy integration with GitHub, we can archive our data automatically

with each update to the data (Fig 1, step 10; [13]). Zenodo’s data versioning provides DOIs

that allow data users to cite both the exact version of the data used in their analyses (to allow

for fully reproducible analyses) and the data set as a whole (to allow accurate tracking of the

usage of the data set). To support the archiving of regularly updated data, data archives should

support automatic updating (e.g., via an API) and data versioning.

Citation and authorship

Regularly updating data also produces complexities for providing academic credit for collect-

ing and sharing data, which is essential for a healthy culture supporting data collection and

reuse [21,22]. Data papers, which allow a data set to be treated like a publication for reporting

and citation, are modeled on scientific papers and are effectively static. This limits their utility

when data is being added repeatedly over time because there is no established way to update

the data, metadata, or authorship. The ideal solution is a data paper that can be updated to

include new authors, mention new techniques, and link directly to continually updating data

in a data repository. This would allow the content and authorship to remain up-to-date and

allow citations to acknowledge the use of the data set as a whole. We have addressed this
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problem by writing a data paper [9] that resides on BioRxiv, a preprint server widely used in

the biological sciences. The data paper can be updated with new versions as needed, providing

the flexibility to add additional details, information on new data types, and new authors. BioR-

xiv supports versioning of preprints, which provides a record of changes to the data paper and

to authorship. Citations to BioRxiv preprints are tracked by Google Scholar, providing aca-

demic credit that can be used to justify continued data collection to funders.

Discussion

Data management and sharing are receiving increasing attention in science, resulting in new

requirements from journals and funding agencies. Discussions about modern data manage-

ment focus primarily on two main challenges: making data used in scientific papers available

in useful formats to increase transparency and reproducibility [21,22] and the difficulties of

working with exceptionally large data [23]. An emerging data management challenge that has

received significantly less attention in biology is managing, working with, and providing access

to data that are undergoing continual active collection. These data present unique challenges

in quality assurance and control, data publication, archiving, and reproducibility. The work-

flow we developed for our long-term study solves many of the challenges of managing this

type of regularly updating data. We employ a combination of existing tools to reduce data

errors, import and restructure data, archive and version the data, and automate most steps in

the data pipeline to reduce the time and effort required by researchers. This workflow expands

the idea of continuous analysis (sensu [14]) to create a modern data management system that

uses tools from software development to automate the data collection, processing, and publica-

tion pipeline.

We use our data management system to manage data collected both in the field by hand

and automatically by machines, but our system is applicable to other types of data collection as

well. For example, teams of scientists are increasingly interested in consolidating information

scattered across publications and other sources into centralized databases, e.g., plant traits

[24,25], tropical diseases [26], biodiversity time series [27], vertebrate endocrine levels [28],

and microRNA target interactions [29]. Because new data are always being generated and pub-

lished, literature compilations also have the potential for continual data expansion. Whether

part of a large, international team such as the above efforts or single researchers interested in

conducting meta-analyses, phylogenetic analyses, or compiling DNA reference libraries for

barcodes, our approach is flexible enough to apply to most types of data collection activities for

which data need to be ready for analysis before the endpoint is reached.

The main limitation on the infrastructure we have designed is that it cannot handle truly

large data. Online services like GitHub and Travis CI typically limit the amount of storage and

compute time that can be used by a single project. GitHub limits repository size to 1 GB and

file size to 100 MB. As a result, remote sensing images, genomes, and other data types requir-

ing large amounts of storage will not be suitable for the GitHub-centered approach outlined

here. Travis CI limits the amount of time that code can run on its infrastructure for free to one

hour. Most research data and data processing will fit comfortably within these limits (the larg-

est file in the Portal database is currently<20 MB, and it takes <15 minutes for all data check-

ing and processing code to run), so this type of system will work for the majority of research

projects. However, in cases for which larger data files or longer run times are necessary, it is

possible to adapt our general approach by using equivalent tools that can be run on local com-

puting resources (e.g., GitLab for managing git repositories and Jenkins for continuous inte-

gration) and using tools that are designed for versioning large data (e.g., dat [30] or git Large

File Storage [31]).
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One advantage of our approach to the challenges of regularly updated data is that it can be

accomplished by a small team composed of primarily empirical researchers. Our approach

does not require dedicated information technology (IT) staff, but it does require some level of

familiarity with tools that are not commonly used in biology. Many research groups will need

computational training or assistance. The use of programming languages for data manipula-

tion, whether in R, Python, or another language, is increasingly common, and many universi-

ties offer courses that teach the fundamentals of data science and data management (e.g.,

http://www.datacarpentry.org/semester-biology/). Training activities can also be found at

many scientific society meetings and through workshops run by groups like the Carpentries, a

nonprofit group focused on teaching data management and software skills—including git and

GitHub—to scientists (https://carpentries.org/). A set of resources for learning the core skills

and tools discussed in this paper is provided in S3 Box. The tool that is most difficult to learn is

continuous integration, both because it is a more advanced computational skill not covered in

most biology training courses and because existing documentation is primarily aimed at peo-

ple with high levels of technical training (e.g., software developers). To help researchers imple-

ment this aspect of the workflow, including the automated releasing and archiving of data, we

have created a starter repository including reusable code (http://github.com/weecology/

livedat). Our website (https://www.updatingdata.org) provides a dynamic tutorial to help

researchers set up continuous integration and automated archiving using Travis CI for their

own GitHub repository. The value of the tools used here emphasizes the need for more

computational training for scientists at all career stages, a widely recognized need in biology

[32–34]. Given the importance of making continually collected data rapidly available for fore-

casting and other research, the field will continue to need to train, support, and retain scien-

tists with advanced computational skills to assist with setting up and managing regularly

updating data workflows.

The rise of technology to aid data collection in the sciences has fundamentally changed how

we quantify and measure biological activities (e.g., [35]) and facilitates our ability to find and

compile information from the literature and across systems. While the resulting ability to gen-

erate data sets that are regularly updated with new information will help address complex

issues facing our society (e.g. climate change, emerging diseases, cancer prevention and treat-

ment), it also comes with unique challenges. We have described some of these challenges and

our approach to solving them in the hope that it can serve as a catalyst for future development

to make implementing data management protocols for this type of data more broadly accessi-

ble. All stages of the workflow for regularly updated data (Fig 1) could be made easier to imple-

ment through improved tooling. A priority for investment in this area is simplifying the setup

of continuous analysis systems for the data management–focused challenges of automated ver-

sioning and archiving. Additional training in automation and continuous analysis for biolo-

gists will also be important for helping the scientific community advance this new area of data

management. There are also a number of important issues that, while not central to our proj-

ect, need to be addressed to maximize the management of regularly updating data more gener-

ally. In particular, we see three areas to address: 1) data licensing issues for heterogeneous data

sets (especially for data compilations [36]); 2) properly crediting contributions to tool develop-

ment (e.g., software, data management pipelines), especially for early career researchers; and

3) determining standards for authorship for large distributed collaborations. Continually

updated data will become an increasingly more common data type in biology. This makes

investment now in the tools, training, and culture of dealing with continually updated data

critical for ensuring that scientists can maximize their use of this emerging data type to address

pressing questions in biology. See Box 4 for glossary of terms.
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Supporting information

S1 Box. A brief introduction to version control using git and GitHub.

(PDF)

S2 Box. A brief introduction to continuous integration and an example setup using Travis.

(PDF)

S3 Box. Resources for learning data management tools.

(PDF)

Box 4. Glossary

CI: Continuous integration (also see S2 Box). The continuous application of quality con-

trol. A practice used in software engineering to continuously implement processes for

automated testing and integration of new code into a project.

Git: (also see S1 Box) Git is an open source program for tracking changes in text files

(version control) and is the core technology of which GitHub, the social and user inter-

face, is built on top.

GitHub: (also see S1 Box) A web-based hosting service for version control using git.

Github–Travis CI integration: Connects the Travis CI continuous integration service to

build and test projects hosted at GitHub. Once set up, a GitHub project will automati-

cally deploy CI and test pull requests through Travis CI.

Github–Zenodo integration: Connects a Github project to a Zenodo archive. Zenodo

takes an archive of your GitHub repository each time you create a new release.

Pull request: A set of proposed changes to the files in a GitHub repository made by one

collaborator, to be reviewed by other collaborators before being accepted or rejected.

QA/QC: Quality assurance/quality control. The process of ensuring the data in our

repository meet a certain quality standard.

Repository: A location (folder) containing all of the files for a particular project. Files

could include code, data files, or documentation. Each file’s revision history is also stored

in the repository.

testthat: An R package that facilitates formal, automated testing.

Travis CI: (also see S2 Box) A hosted continuous integration service that is used to test

and build GitHub projects. Open source projects are tested at no charge.

Unit test: A software-testing approach that checks to make sure that pieces of code work

in the expected way.

Version control: A system for managing changes made to a file or set of files over time

that allows the user to a) see what changes were made when and b) revert back to a previ-

ous state if desired.

Zenodo: A general, open-access, research data repository.
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