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Abstract 

In this paper, an optimal LQG controller is designed to achieve proper dynamic position stabilization on an offshore vessel. The designed 
control loop operates in the presence of noise from the measurement of sensors, environmental perturbations of waves, winds, and ocean 
currents. The intended offshore vessel has two side actuators to generate the required torque. The designed controller includes state 
feedback and an extended Kalman filter. In this study, an additional variable in the system state space is used to improve the performance 

of the LQG controller in the presence of noise. The results of the simulations performed in the content software show the efficiency of the 
proposed method compared to the conventional LQG control method. The results of simulations performed in MATLAB reveal a better 
efficiency of the proposed method compared to the traditional LQG control method. 
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1. Introduction 

Using the issue of dynamic position stabilization (DP) is 

relevant to the controlling of nonlinear system operators in 

a surface watercraft for low speed maneuvering or floating 

maintenance. Operators that produce the control signal on 

watercraft are generally categorized in two types of 

propellers and thrusters. Dynamic position stabilization 

systems have been used commercially on marine watercraft 
for about 60 years. The mathematical model of the dynamic 

motion of watercraft, in general, has six degrees of 

freedom. System modeling based on physical equations 

along with statistical approaches is conventional methods 

for constructing an applicable state-space equation for 

controller design (Golparvar et al., 2016; Modir et al., 

2016; Ho et al., 2013; Balchen et al., 1980). Izadi et al 

(2016) provided a model-based approach combined with 

the extracted signal from the system to define a realistic 

mathematical model of an actuator. The extracted model is 

used not only in the controller design, but also it can be 
used in applications like fault detection and isolation (Izadi 

et al., 2017).  In the modelling of the offshore vessel for 

this research, the conventional model based on the physical 

equation is used. The reason for this approach is the 

simplicity of the controller design process. In addition, the 

nonlinearity of the system is not considerably affective on 

the designed controller performance in the linearized zone 

(Shahri et al., 2020; Shindgikar et al., 2020; Karimi Shahri et 

al., 2019; Kelareh et al., 2019; Taremi et al., 2019; Izadi et 

al., 2017; Izadi et al., 2016; Sørensen, 2011; Fossen & 

Strand, 1999; Sørensen et al., 1996; Balchen et al., 1976). 

Especially in (Taremi et al., 2019), the authors investigated 

an approach to design a tracker by fuzzy polynomial 

control law. In the proposed method, the nonlinearities of 

the system are considered. Therefore, the proposed design 

approach is applicable to a wide range of systems.  Floating 

stabilization is often considered along the x and y axes and 
the yawing around the z-axis. Hence, most of the studies 

conducted on stabilizing the dynamic position of the 

control system have an equation of motion with three 

degrees of freedom (Ho et al., 2013; Balchen et al., 1980). 

The first dynamic positioning system uses a PID controller 

with a series of low-pass and band-stop filters. 

Kalman filter theory and optimal control methods have 

been used to improve the performance of the control 

system. One of the most commonly used optimal control 

methods for float position stabilization is the LQG method, 

which includes an LQR controller and a Kalman filter 
(Sørensen et al., 1996; Balchen et al., 1976). In general, 

Kalman filters are used to estimate the state values in the 

presence of measurement noise and calculating the 

feedback control gain. For the best performance of this 

controller, the values of designed gains should be adjusted 

according to the operating conditions of the offshore vessel. 

Real-time modification and updating of these gains in the 

designed controller add complexity to the system and has 

specific implementation conditions (Fossen & Strand, 

1999). In order to detect and remove system noise, different 
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methods have been used so far. Tabatabai Adnani et al 

(2016) used Butterworth Low Pass Digital for detecting and 

removing of the system noise in real simulation (Sørensen, 

2011). In this paper, the optimal LQG control method is 

used to stabilize the dynamic position of the offshore 

vessel. A new variable has been added to the linearized 

state space of the system to reduce the complexity of the 

controller instead of real-time adjustment of LQR gain and 

Kalman filters. This new variable results from the integral 
of the difference between the actual and desired output 

value output. By using this new variable, a modified LQG 

controller is obtained, which shows better steady-state 

behavior than the conventional LQG controller. First, the 

mathematical model of DP is presented, then the design of 

the proposed LQR controller is discussed. Finally, the 

numerical results of the heuristic method will be shown 

with the help of MATLAB. 

 

2. Mathematical Model  

There are several mathematical model and formulation 

that researchers applied to solve the engineering problems 
(Hosseinzadeh et al., 2019; Mousavisani et al., 2019). 

Considered Modeling is essential in the design and control 

of offshore vessels because the model of the ship can be 

used to evaluate the designs in order to achieve cost 

reduction. Using a real ship to implement the designed 

system, the model used the model to conduct initial 

investigations on the developed model and fix the 

problems. 

In general, a vessel has six degrees of freedom, 

including linear and rotational motions around its major 

axes. In the offshore vessels, most movements occur at 
three degrees of freedom, which are linear motion on the x 

and y axes and the circumference of the z-axis. Hence, as 

shown in Fig. 1, the position, velocity, and force at each 

degree of freedom are expressed as follows: 

 

 

Fig. 1. The coordinates of the offshore vessel. 

In vessels, there are often two reference frames or 

coordinates for small-scale control which include 

(Sørensen, 2011): 

- North-East-Down (NED) 

- Body Frame  

The reference frame      { }  {        } has origin 

   and is assumed to be the tangent plane to the Earth's 

surface at the desired position from the Earth and inertial 

frame. In this reference frame, the direction of    is 

oriented to the north,    to the east and     toward the 

center of the earth. This reference frame is used for marine 

vessels which are placed approximately in the same latitude 
and longitude.  

The reference body frame { }  {         } has origin 

    is fixed to a point on the vessel close to the center of 

gravity. The axis    is in the direction of the stern toward 

the bow,    in the direction of the right side and     is 

downward.  The velocity vectors (V) and force (τ) are 

expressed in the body frame while the position of the vessel 

is at NED Reference Frame (shown in Fig. 2). The 

conversion between the inertia frame and the vessel’s body 

on the plane (x, y), in other words, the surge, sway and yaw 
motion of vessel’s body, is expressed as the Eq. (1). 

 

Fig. 2. Body reference in respect to NED reference. 
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The yaw angle value is determined by the sensors on the 

vessel. The acquired data from the sensors on the watercraft 

generates a rich set for extracting the location and 

orientation information for the system. Based on the 

compression methods like (Surakanti et al., 2019), the 

amount of required storage memory and required 

bandwidth for communication can be reduced. Therefore, 
in the provided approach, we supposed that the potential 

design limitations do not apply any modification on the 

controller design process. In addition, a conversion matrix 

is used to indicate the vessel’s velocity in the inertial 
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reference frame. Hence, the velocity is defined as the Eq. 

(2) in the inertial reference: 

  ⃑        ⃑                                                                      (2) 
In this way, the value of the yaw angle and as the 

velocity of the vessel at the body frame provides the 

velocity of the vessel in the inertial reference frame. The 

equation of motion of the vessel in the inertial frame is 

expressed as the Eq. (3): 

  ⃑̇     ⃑   ⃑    ⃑   ( ⃑  )                                       (3) 

 

  is inertia matrix,    ̅  Coriolis torque,   shell friction, 

   ̅   damping torque and      environmental perturbation 

torque. As stated in the Eq. (4), the ocean currents, waves, 

and winds are the perturbations torque applied to the body. 

d wind wave current                                                (4) 

                                        

3. LQG Controller Design 

The LQG method is obtained by combining the two 

LQR problems and the Kalman filter. The system equations 

in the presence of measurement noise are assumed to be as 
the Eq. (5) (Welch & Bishop, 2006). 

( ) ( ( ), ( ), ( ))

( ) ( ( ), ( ), ( ))

x t f x t u t w t

y t h x t u t v t




                                       

1 1v M M Dv                                                         (5) 

Which      and      are the state noise and the output 

noise respectively. In order to design the LQG controller 

for dynamic position stabilization, the floating-point 

equation is rotated around zero velocity. Using the Taylor 

series expansion, the system equation is linearized as 

follows:  

On the other hand, since the purpose of the controller 

design is to stabilize the dynamic position of the vessel, the 

system equation must also include the position of the 

system in addition to velocity. Hence, with the above 

equation the state space is expressed as the Eq. (6): 
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where the measurement noise and perturbation are 

considered.    is state noise gain,    output noise gain and 

   ,     are input and output gain.  

In the LQR case in the LQG controller, the objective is 

to calculate the state-feedback gain k in order to stabilize 

the system and minimize the objective cost function. This 

objective function in the LQR controller is defined as the 

Eq. (7): 

0

, ' , 'T T

zu zu z zJ X QX U RU dt R D D Q C C



   
 (7)                                        

where Q and R are the weight matrix (semi-definite 

positive) of state vector coefficients and the matrix 

(positive definite) of the controllers. As shown in the Eq. 

(8), first the state-feedback gain k is obtained by solving 

the Riccati differential equation then the value of the input 

signal U is calculated. 
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                                       (8) 
In the Kalman filter section, the objective of calculating 

the observer gain F is to minimize the cost function (see the 

Eq. (9)) and stabilizing the state estimation error. 

0

, ' , 'T T

f n n n w wJ Q R dt R D D Q B B    


   
 (9)   

   The solution of the Riccati equation is used in order to 

obtain the gain of the observer F. Consequently, the closed-

loop equation of the state space will be obtained which is 
shown in Fig. 3 and is expressed as the Eq. (10): 

( , , , )( ) ,

( ', ', , ),

u y

n n

k lqr A B Q Rx A B k FC x Fy

F lqr A C Q Ru kx

    

   (10) 

 

Fig. 3. LQR controller. 

Although the designed controller shows a good 

performance by generating floating-point offset with a 
nonlinear model. However, by adding perturbation torque 

of waves to the designed controller system, it generates a 

permanent error and will not perform suitably as well. In 

addition to the numerical results as shown in the results 

section, desired outputs will have steady-state error. 

Altering the gain in the LQG controller would not solve 

this problem. Therefore, an integral term is used to omit the 

steady-state error problem. The source of the perturbation 

is mostly because of the environmental condition of the 

watercraft. In this paper, we considered external 

disturbances like another controller agent, which generates 

an additional control signal for the system. The used 
approach to dealing with this situation is based on the 
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simplest provided method in (Bagheri et al., 2019: Izadi et 

al., 2019: Golding, 2005; Welch & Bishop, 2006), which is 

based on the added integrator in the state variables of the 

system.  It must be considered that the provided method in 

(Golding, 2005; Welch & Bishop, 2006) is modified for our 

application.  To add an integrator term to the controller, an 

additional variable is plugged into the equation of state 

space (see the Eq. (10)). This variable represents the 

steady-state error value and is the result of the integral of 
the difference between the output value and the desired 

position value with a gain. Hence, there is also an 

adjustment in the equation of state space. The equation of 

the state space (see the Eq. (11)) in the LQG controller with 

an integrator is: 

 

( )

0 0

u x y e

x e i

A B k FC k x Fx

e Ie

x x
k k k

e e





        
        
      

   
    

             (11) 

The block diagram of this controller is shown in Fig. 4 

which   ,    are the gains of error and regulators 

respectively and defined    matrix. 

 

Fig. 4. LQG controller with integrator. 

4. Numerical Simulation Results 

In this article, the free Naval Control and Navigation 

Toolbox of the Norwegian University of Science and 

Technology in MATLAB software were used to implement 

the designed control methods. The chosen offshore vessel 

model is CyberShip II. This ship has two-sided thruster 

and, as shown in Fig. 5, has a lateral and longitudinal 

distance of 15 and 30 [m] relative to the gravity center of 

the ship, respectively. First, the nonlinear model of the ship 

was designed with wind turbulence, ocean waves and 

currents then the model is linearized. The values of the 

matrices M and D for the linearized state equation are 
represented in the Eq. (12). 

 

Fig. 5. The position of side Thrusters in the CyberShip II. 

  [
      
           

           

]    [
   
   
     

]    (12) 

By applying the obtained linear model obtained, the gain 

of the LQG and LQG controllers along with the integrator 

term was obtained (see Eq. (14)). The results of applying 

this controller to the nonlinear model of the ship with a 

position offset are shown in Fig. 6, Fig. 7 and Fig. 8 for the 

x, y, and ψ axes, respectively. 

As can be seen, the LQG controller shows good 
response and in the presence of measurement noise fixes 

accurately the position of the ship at the reference point 

(x,y,ψ)=(0,0,0). As shown in Fig. 9, Fig. 10, and Fig. 11, 

the LQG controller has a steady-state error when the 

perturbation torque with the velocity of 2 m/s and yaw 

angle of 30 ° is applied to the ship. 

 

Fig. 6. X-axis status stabilization with LQR controller without 

perturbation. 

 

Fig. 7. Y-axis position stabilization with LQR controller without 

perturbation. 
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Fig. 8. yaw-axis position stabilization with LQR controller without 

perturbation. 

The steady-state error does not alter significantly with 

the change of controller gains. However, if the LQG 

controller is used with the integrator term, the steady-state 

error will be significantly reduced. This is illustrated in Fig. 

12, Fig. 13 and Fig. 14. 

 

Fig. 9. X-axis position stabilization with LQR controller with perturbation. 

 

Fig. 10. Y-axis position stabilization with LQR controller with 

perturbation. 

 

Fig. 11. yaw position stabilization with LQR controller with perturbation. 

 

Fig. 12. X-axis position stabilization with LQR controller with integrator 

and perturbation. 

 

Fig. 13. X-axis position stabilization with LQR controller with integrator 

and perturbation. 
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Fig. 14. X-axis position stabilization with LQR controller with integrator 

and perturbation. 

5. Concluding Remark  

The In this paper, an optimal LQG controller is designed 

to stabilize the dynamic position of a scaled model of the 

ship. The steady-state error problem of this controller was 

solved by applying a new state variable derived from the 

error integral. Simulations also showed the effectiveness of 

the proposed method in the presence of marine 

perturbations. As a result, this solution can be used to 

stabilize the position of the offshore vessels. 
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