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ABSTRACT 

Upper limb angular motion measurement is particularly a subject of interest in the field of rehabilitation. It is commonly 
measured manually by physiotherapist via goniometer to monitor stroke patient’s progress. However, manual 
measurement has many inherent drawbacks such as the need to have both patient and physiotherapist to be at the same 
place. In this paper, an automated real-time single-camera upper limb angular motion measuring system is proposed for 
home-based rehabilitation to aid physiotherapist to monitor patient’s progress. The measurement of concern are angle 
measurement of elbow extension, elbow flexion, wrist flexion and wrist extension. To do this, we propose a method that 
utilized predefined coordinate points extracted from the contours of the object named as contour based motion tracking. 
The proposed method overcome problems of prior target tracking techniques such as Kalman filter, Optical flow and 
Cam-shift. The proposed method includes skin region segmentation and arm modelling for motion tracking. Prior skin 
segmentation techniques suffer from fixed threshold value set by the user. Therefore, we introduce dynamic threshold 
based on the lower and upper threshold boundary of isolated skin regions from the background. To ensure the reliability 
of our skin segmentation method, we compare them with four different related algorithms. The result shows that our skin 
segmentation method outperformed the prior method with 93% detection accuracy. Following the segmentation, we 
model the arm motion tracking by formulating mathematical equation of various points and motion velocities to track 
the arm. We then model the wrist and elbow position to estimate arm angular motion. The method is put together and 
tested with real human subject and other test settings. The result shows that our proposed method able to produce an 
accurate and reliable reading of +-1.25 average range of error from actual physiotherapist reading.  

 
Keywords: Angular Measurement, Stroke Rehabilitation, Home-Based Rehabilitation, Upper Limb, Motion 
Tracking, Skin Segmentation, Contour-based Measurement  

1.0 INTRODUCTION 

As the public health systems are improving, the demand on the physical disabilities rehabilitation increases. The interest 
in rehabilitation engineering becomes more common and many rehabilitation instruments are introduced to help 
patients’ recovery. The instruments are designed to ensure rehabilitation exercise are conducted properly and to assess 
the progress of the rehabilitation. However, most of the current implementations are done manually and normally 
requires the present of both patient and physiotherapist for the rehabilitation process. Professional physiotherapist needs 
detailed data to monitor clinical progress and to adjust their treatments or prescriptions based on the patients’ progress. 
On the other hand, the patients need real-time feedback to correct their movements and to motivate themselves. This can 
be a major hindrance since it involves several problems such as traveling cost, traveling time, difficulty in setting 
appointment schedule, slow and etc. [1]. Therefore, home-based rehabilitation is considered by prior researchers to 
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overcome these problems. Home-based rehabilitation has also been seen to be an alternative to oversubscribed 
international healthcare systems [33].  

There are various home-based rehabilitation systems but developments using motion capture systems are gaining more 
attention. This is due to the fact that motion capture systems have been well received in other field such as gaming, 
human-computer interaction and surveillance tracking based applications [2-7]. Common motion capture systems are 
instrumented gloves, wrist-worn laser systems, inertial systems, and optical systems [33]. The instrumented gloves and 
wrist worn laser system are intrusive and can be difficult for patients with deformities. In contrast, inertial system such 
as Nintendo Wii and mobile phone with accelerometers, gyroscopes and magnetometers have limited capability to 
measure movements. This is due to the inertial system only uses the wrist flicking information to estimate other 
movements.  

Optical systems, which consist of camera is considered as good candidate for home-based rehabilitation due to their 
wide range of view. They can be further divided into marker-based visual tracking system and marker-free visual 
tracking system. In marker-based visual tracking systems, the identifying process of the region of interest moderately 
simplifies the actual human motion tracking problem. However, marker-based visual system requires extra 
configurations and settings such as the placement of the retro reflectors, camera calibration etc. Therefore, it is usually 
desirable to develop a marker-free visual tracking system instead of the intrusive marker based system. There are also 
systems consists of single camera configuration, multiple cameras configuration, and optical system combined with 
high-cost sensors (i.e. acoustic, radar and inertial) [8-12]. Single camera configuration is less expensive compared to the 
multiple cameras configuration and combined systems.  

Taking the advantage of the marker free visual tracking system and single camera configuration, this paper will 
concentrate on these two elements in the design. In this paper, we propose an upper limb measuring system for home-
based rehabilitation purpose through visual tracking method. It goes beyond typical gesture recognition that is used only 
to track the movement of a subject. The proposed system, on the other hand, is intended to attain specific measurement 
for home-based rehabilitation application. Four angular motion movements which include elbow extension, elbow 
flexion, wrist flexion and wrist extension, a measurement that is normally done manually by the physiotherapist via 
goniometer is considered for the system. The angular motion measurement is important attributes to assess the progress 
of stroke patients.  One of the method to measure these four attributes is by utilizing target tracking algorithms such as 
Kalman filter, Open flow and Cam-shift. However, they seems not to be suitable for our upper limb measurement 
application since they are unable to track the targeted points. This is due to high computational time is required to keep 
up with the targeted points and the interferences from the background scene affects the overall performance of the 
technique. For this reason, we design our measuring system based on the coordinate points extracted from the contours 
of the object named as contour based motion tracking. Our algorithm overcome prior target tracking techniques by only 
tracking predefined points extracted from the object contour. The proposed contour based motion tracking is divided 
into skin segmentation and arm modelling for motion tracking. The skin segmentation separates the upper limb (i.e. the 
arm) from the unwanted background of the image. Conversely, the arm modelling is used to model the points needed for 
measuring the four attributes.  

In the skin segmentation stage, we consider methods that could detect effectively the arm region. We utilize face 
recognition technique which act as an extra clue to get more accurate results on skin segmentation. One of the major 
problem in prior skin segmentation technique is the use of a fixed threshold value set by the researchers.  The fixed 
threshold will not able to cope with different skin colors and different illumination conditions which lead to inaccurate 
segmentation result. There are also adaptive thresholding method that separates skin from non-skin pixels. They are 
based on a color histogram that able to cope with the rapid illumination changes. However, the drawback of this method 
is that the threshold values are bound to change if different human races and wider range of varying illuminations are to 
be taken into account. For this reason, we propose a method that adjust the best values for the lower and upper threshold 
boundary of isolated skin regions from the background to overcome the problem. The method has two significant 
advantages where the process of initializing the threshold values becomes automated and it allows the algorithm to 
dynamically find the best threshold values based on individual skin color. We also utilize the hue, saturation, and value 
(HSV) space instead of red, green and blue (RGB) color space. The HSV provides a high separation contrast between 
skin regions and non-skin regions. Our proposed method is tested and compared with four other related skin 
segmentation methods such as skin probability map, HSV back-projection, YCrCb back-projection and RGB back-
projection algorithm.  
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In the arm modelling for motion tracking, we formulate mathematical equation to model the points needed for the upper 
limb measurements. Based on the predictability of spacing of the points of the arm’s contour, we are able to estimate any 
point on the arm by assigning the appropriate coordinate point. The proposed method is then tested with human subject 
and compared with conventional goniometer measurement, which is manually measured by professional physiotherapist. 
We also include several test at different viewing angles with respect to goniometer to ensure the reliability of the 
proposed method. 

 
The rest of the paper is organized as follows. The existing human visual motion tracking methods with various 
configurations are discussed in Section 2. The proposed system is presented in Section 3. Section 4 contains the 
experimental results and discussions. Conclusions are drawn in Section 5. 

 
2.0 REVIEW OF LIMB MOTION TRACKING SYSTEMS 

In this section, we discuss various human motion tracking systems that aimed for medical rehabilitation. L. Enrique et al. 
[13] developed a prototype called “Gesture therapy” based on two webcams. First, a webcam was placed in front of the 
patient and the other webcam was placed above the patient’s head. Further, patients were asked to interact with a virtual 
environment by moving their impaired arm accordingly. The system tracked the hand using color and motion 
information in 3D space and the coordinates of the hand were sent to a simulator to measure the angles and daily life 
activities. The multiple camera-based visual motion tracking systems are considered as high-cost and required specific 
arrangements of cameras instead of single camera-based systems. Conversely, a single camera-based visual tracking 
systems are low-cost and has advantages of simplicity. However, it suffers from various constraints, i.e. prior knowledge 
about the appearance of the subject, the geometry, kinematics, and dynamics of the subject.  

In a single camera-based configuration, Polana et al. [14] proposed an approach for visual motion tracking which can 
spatially and temporally normalize, segment and recognize a repetitive motion i.e. walking or any repetitive motion 
activity without having any prior knowledge of specific parts. Following the approach, Ming Du et al. [15] proposed a 
system based on monocular camera to track the human motion by taking the advantages of the DE-ME (Markov chain) 
algorithm. In addition, this algorithm system solved the 3D articulated model-based human motion tracking problem. 
Similarly, in [16], Ding et al. proposed a method that estimates the relative 3D coordinates of skeleton joints with two 
major limitations. First, in the proposed model, the targeted depth value was smaller than the distance between the 
subject and the camera. Second, the human movement must be faced to the camera. Furthermore, Liu et al. [17] 
presented a full-body human motion tracking system using exemplar-based conditional particle filter. Similarly, Spruyt 
et al. [18], presented an unsupervised method to automatically learn the context in which a hand was placed. Adams et 
al. [19] used a Kinect sensor and a high-fidelity virtual world interface to acquire the depth image of the scene. Further, 
it applied an unscented Kalman filter-based tracking algorithm to estimate upper extremity joint kinematics in real-time 
during performance of virtual activities of daily living. The proposed system was able to generate metrics related to 
speed and smoothness of motion for subject, however, this system requires special hardware.  

Tian et al. [20] addresses the limitations of Kinect and Inertial Measurement Unit (IMU) sensors used in trajectory 
tracking systems and proposed a method that fuses IMU and Kinect data to provide robust hand position information. 
Where the proposed system achieved hand position by three fusion strategies: double integration of IMU internal 
sensors, IMU internal sensor fusion with geometrical constraints and unscented Kalman filter (UKF) based fusion of 
IMU and Kinect. Similarly, Tanaka et al. [21] proposed a portable six degree of freedom motion tracking system 
comprising of a high-accuracy augmented reality markers that would be attached to the subject arms and a single 
camera. This system was able to estimate the pose of the arms with an error of 5mm and 20 (degree) in space and 
orientation, respectively. Ligorio and Sabatini [22] developed a novel Kalman filter for human motion tracking by fusing 
the data from a triaxle gyroscope and a triaxle accelerometer. The approach used stereo photogrammetric data as a 
reference, and the average root mean square attitude error of 3.6° in manual activities and 1.8° in local motion tasks.  

From our study most of the tracking systems mentioned earlier employ special hardware which increases the overall cost 
of system, and has less portable capability. Despite the different types of sensors used in tracking the motion as 
mentioned above the core common algorithms that are used to perform the motion tracking are: Kalman filter, Optical 
flow, and Cam-shift. In next few paragraphs, we will briefly discuss the basics of these techniques. 
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A. Kalman Filter 

Kalman filter is an efficient recursive filter that roughly calculates the state of a dynamic system from a series of 
incomplete and noisy measurements [22]. The kalman filter has two unique stages: predict and update. In the first stage 
it uses previous time-step to generate an estimate for the current state. In the second stage, the information from the 
current time-step is used to refine the prediction to compute a more accurate estimation. The accuracy of the prediction 
in the kalman filter depends on how accurate the previous information was computed. However, in a vision-based arm 
motion tracking system, where the frame rate of the webcam is about 30 frames per second, so, this sampling rate may 
not be sufficient to estimate some arm maneuvers. As our experiments on Kalman filter motion tracking shows this fact 
in Fig. 1. When we applied Kalman filter tracking algorithm to track a desired point on the tip of the subject’s finger as 
shown in Fig 1(a), next as the subject moves his arm back and forth the targeted point, it failed to keep the subject’s 
movements. Furthermore, it takes more times due to computation and performed slowly upon any displacement of the 
targeted point. 

 

Fig 1: Kalman filter tracking. (a) Initial position; (b) Failure in tracking. 

B. Optical Flow 
 

Optical flow motion tracking algorithm is considered as another popular object tracking technique used in computer 
vision. The algorithm is based on the fact that lighting condition in two successive frames is relatively constant, thus the 
intensity of each pixel on the object would be the same [25]. Based on this assumption if the position of specific pixel 
intensity changes in the next frame we can conclude that the point on the object has moved in the time in between two 
frames. As shown in Fig 2, we applied an optical flow tracking algorithm for the purpose of motion tracking to see how 
it copes with the motion of the arm. In our experiments, we found that this method fails to successfully track the targeted 
point. Due to the nature of its algorithm the assigned targeted point drifts away over time or by any rapid movements of 
the arm thus, resulting in an unreliable reading in Fig 2 (b). Moreover, assigning a precise location to the optical flow 
algorithm to track can be challenging because it tends to drift the assigned point slightly away from the intended region 
which can be an issue in some situations.   
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Fig 2. Optical Flow tracking (a) Initial position; (b) Failure in tracking. 

C. Cam-Shift 
 

Cam-shift algorithm is an adaptation of mean shift algorithm that basically differs from the mean shift algorithm. The 
search window adjusts itself in size based on how far or closer the object moves from the camera. The concept behind 
cam-shift tracking method is simple. Where it starts with a set of distributed pixels in an image and a small rectangular 
window, the objective is to move the window to an area in which the pixel density is at its maximum (basically where 
there are maximum numbers of pixels) [30]. The drawback of this tracking technique is that it won’t work when the 
desired tracked object is close to black or white color and this is due to its method of tracking which uses the hue 
component of the image. Additionally, any rapid or sudden changes to the motion of the object can make the system to 
fail. 

 
Fig 3: Cam-shift tracking (a) Initial position; (b) Failure in tracking. 

As shown in Fig 3, we implemented Cam-shift algorithm to see how it can cope with our arm motion movements. First 
of all, when it comes to motion tracking with Cam-shift algorithm we are not able to assign a single point to the 
algorithm and ask it to track just this specific point because simply it doesn’t accept a single point. Hence, we have to 
assign a region of interest to the algorithm as illustrated in Fig 3(a), as the subject moves his arm the elliptical shape 
representing the area that the algorithm is tracking drifts to another area. As it is demonstrated due to the fact that it 
drifts a way to another region it was considered not suitable for our purpose system. 
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3.0  PROPOSED UPPER LIMB MOTION TRACKING SYSTEM 
   
In this section, we introduce a single camera based marker-free upper limb measuring system for the purpose of home-
based rehabilitation. The proposed method employs the state of the art face recognition algorithm to identify the face as 
a clue of skin isolation known as automated skin segmentation process. After segmenting the skin pixels it further 
introduced contour based motion tracking of arm region. Finally, proposed system estimate the wrist and elbow joints 
positions based on contour information, where these positions used as reference point for evaluating the angular motion 
performed by the arm i.e. wrist flexion, wrist extension, elbow flexion, and elbow extension. The detail of the proposed 
system with different stages is shown in Fig 4 and discussed in section 3.1 to 3.4. 
 

Patient be seated 
according System 

Configuration

Automatic Skin Region 
Segmentation

Find Optimum 
Threshold for Skin 
Region Isolation
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Skin Region Segmentation 
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Fig 4: Flowchart of Proposed Upper Limb Motion Tracking System 

 
3.1 System and Use Case Configuration 

One of the motivations of the proposed system is a low-cost motion tracking solution without any extra hardware, where 
the  proposed system employ the built-in webcam of a laptop for image capturing and processing for various tasks. In 
this system configuration setup, first, the subject has to be seated on a chair approximately one meter away from the 
webcam as shown in Fig 5(a). In this stage, the proposed system apply the skin tone calibration procedure, in which only 
the subject’s face should be targeted in front of the webcam. Once the proposed system identified the subject’s face with 
his/her skin tone calibration, in next stage, the subject is required to be moved either to the left or right of the camera 
field of view and show his/her targeted arm in front of the webcam. Fig 5(b) shows an example of a subject’s arm, where 
he/she can flex various position of an arm according to physiotherapist recommendation. Then, the proposed system 
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apply its internal contour based motion tracking processes that indirectly computes the parameters such as the rate at 
which a particular point on the arm has moved from one point to another (the velocity of a point) and the range of 
motion (ROM) performed by the arm, namely wrist flexion, wrist extension, elbow flexion and elbow extension. The 
rest of proposed system stages are briefly discussed in the next section. 
 

 
 

(a) 
 

(b) 

Fig 5: (a) Top view of the calibrations procedure, (b) Top view of the experimental setup 
 

 
3.2 Automatic Skin Region Segmentation  

Skin detection has an important role in a wide range of image processing applications such as gesture recognition, 
human tracking, content based retrieval systems, and different human computer interaction domains [12]. Skin detection 
methodologies based on skin-color information is a powerful and often computationally inexpensive cue. Furthermore, it 
is robust towards geometric variations (rotations), scaling and partial occlusion. In general, however it is not an easy task 
to extract regions of specific color from a known color image, since the appearance of skin color information varies 
upon several factors such as, the camera sensor characteristics, ambient illumination, ethnicity, individual characteristics 
(such as age, makeup, hairstyle glasses and etc.). Thus, due to these variables the outcome of the skin segmentation will 
be affected and consequently produces high false positive rate. Therefore, an algorithm which copes with these 
variations should be developed.  

 
Many different skin modeling and classification approaches have been proposed to detect skin-color in images, however, 
most of the reported works showed good results only for a limited set of illumination conditions and skin types. The 
adaptability of a skin-color detection algorithm to the changes in the ambient lighting and the viewing environment is 
one of the important factors in determining its success. There are mainly two different classes of approaches that deals 
with the rapid changes in ambient lighting conditions for skin detection: 1) color constancy and dynamic adaptation. 
Various skin-color constancy approaches such as [4, 2, 5, 3, 6] have been proposed, however all these methods require 
the presumption of the camera characteristics, the illuminant properties or the distribution of the color values. On the 
other hand, dynamic adaptation approaches seem more promising and reliable in dealing with rapid illumination changes 
[12]. For example, in dynamic adaptation domain, Cho et al. [1] proposed an adaptive thresholding method in Hue, 
Saturation and value (HSV) color space that separates skin from non-skin pixels using a thresholding box, the threshold 
values of the S and V components are updated based on a color histogram built in SV color space to cope with the rapid 
illumination changes. However, the drawback of their method is that the threshold values are bound to change if 
different human races and wider range of varying illuminations are to be taken into account.  
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The purpose of this stage is to introduce automatic and independent initializations setups for subject/patient instead of 
any manual hassle for setting up the system. For this, we first employed the skin tone calibration and further applied the 
segmentation process to identify the subject’s face skin region. This skin region based information used as input of 
contour motion tracking process. Generally, in literature, various skin segmentation techniques proposed by prior 
researchers such as skin-color constancy methods and adaptive thresholding methods. These methods shows acceptable 
results only for a limited set of illumination conditions and skin types. However, we proposed a process to find the best 
adaptive lower and upper thresholds, which isolate the skin region from background. This process employed the hue, 
saturation, and value (HSV) space instead of red, green and blue (RGB) color space. 
 
3.2.1 Skin Tone Calibration 

The skin tone calibration procedure runs only once at the start of the program. It utilizes the rapid face detection method 
introduced by Viola and Jones [26] to robustly isolate the face region within the scene, next step we automatically adjust 
the lower and upper threshold value of our HSV color space until we reach an acceptable number of skin pixels present 
with in the detected face region. By applying this technique, we are able to eliminate the non-skin regions of the scene 
from the skin regions 
 
3.2.1.1 Finding the optimum threshold values that best isolates the skin regions from the background 

At this stage, the aim is to identify the best values for the lower and upper threshold boundary of isolated skin regions 
from the background. The ‘best lower and upper threshold value’, means the threshold values that are after being applied 
to each frame which preserves the maximum number of skin pixels presented in the scene. Fig 6(b) shows the outcome 
of this stage in which all the background (non-skin pixels) are eliminated, while portions of the skin region that 
corresponds to skin pixels are retained.  
 

 
Fig 6: (a) Input image (b) Binary representation of the skin regions (as white pixels) extracted from our repetitive 

sequential thresholding procedure. 

To identify the lower and upper threshold values that can best isolate the skin regions from the background two different 
aspects of each frame are taken into account. (1) The number of skin pixels within the scene as shown in Fig 7(a). (2) 
The number of non-skin pixels within the scene as shown in Fig 7(b). 
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Fig 7: (a) Representation of skin pixels (b) representation of non-skin pixels. 

We refer to the extracted portion of the person’s face to be the skin region since we are sure that this region contains 
skin pixels of the person. Furthermore, we refer to the entire scene excluding the extracted face region as the non-skin 
regions as shown in Fig 7. Afterwards, it automatically adjusts the lower and upper threshold values sequentially (one by 
one, starting from 0 up to 255 for the lower threshold boundary, and from 255 down to 0 for the upper threshold) and 
applies it to the entire image. Subsequently, we observed the outcome that shows the effect of the thresholding on each 
frame by taking into account the changes in the total number of skin and non-skin pixels within the scene. Next, we 
repeat the process of adjusting threshold values and observing the outcome until we achieve a fair amount of separation 
between the skin and non-skin pixels within the scene. At this point, we apply a morphological operation filter to 
eliminate any unwanted small regions presented in the non-skin pixel image representation that is incorrectly identified 
as to be skin region due to the similarity of the particular region to the skin. The end result is a binary image that shows 
the skin pixels identified based on lower and upper threshold values as shown in Fig 6(b). From this point onwards the 
threshold values are obtained, that will be used recursively throughout our skin detection algorithm. Initializing the 
threshold values for segmenting the skin regions by face detection has two major advantages:  
              

(1) The process of initializing the threshold values becomes automated. 
(2) Allows the algorithm to dynamically find the best threshold values based on individual skin color.  
  

3.2.2 Skin Region Segmentation 

The whole segmentation procedure carried out using two sub-stages.  
 

• Extractions of skin pixels coordinates 
• Feeding of extracted points to seed filling algorithm  

 
First, it extracts the coordinate points of the skin pixels from skin tone calibrations stage as shown in Fig 6(b). Second, it 
feeds the extracted skin pixel location to a seed filling algorithm. After this stage, the seed filling algorithm locates each 
point within the scene and uses it as a reference (seed) point to isolate an area in a multi-dimensional array based on the 
color similarity of the neighboring pixels. The seed filling algorithm looks at the pixels associated with each of the 
coordinate points (known as the seed point) and takes its hue information as a reference then the hues of each of its eight 
neighboring pixels are compared to the reference point. If the difference is within the acceptable predefined range, it is 
marked as skin otherwise this considered a non-skin pixel. In practically the hue, saturation and brightness are likely to 
be different in various parts of the skin regions such as the face and/or the arms. Hence to overcome this issue, we take 
advantage of bilateral filter. Bilateral filter is known to be an edge-preserving smoothing yet time-consuming filter. 
Thus, to take advantage of its edge preserving and smoothing features in real time we tackle in two parts:  
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• First, reduce the image resolution. 
• Second, apply several small bilateral filters.  

 
In the first part, by reducing the image resolution basically means lesser number of pixels used and save the time for 
processing. Further, additionally applying several small bilateral filters rather than one large filter will allow the filter to 
run in real time.  

 
Fig 8:  Illustration of bilateral filter truncating. 

The concept of truncating the filter is illustrated in Fig 8. If we assume the filter matrix (kernel) of our bilateral filter to 
be 21 x 21 pixel wide shown here as the bell curve, consequently, if we use the minimum kernel size of 9 x 9 pixel wide 
(shown above in gray) we still are able to cover the major parts of the filter without wasting time on the minor parts of 
the filter (the white area under the curve), consequently the filter will run several times faster. The result of the proposed 
accelerated bilateral filter is shown in Fig 9. As it is depicted from Fig. 6(b) the face region is highly distinguishable 
from rest of the scene, while the hue variation within the face region is more persistence and predictable. 
 

 
Fig 9: (a) Input image (b) bilateral filter applied to the input image. 

However, the complete procedure of our automatic skin region segmentation is illustrated in Fig 10. In Fig 10 (a), it 
received the input images and this stage only runs once at the start of the program. Then the lower and upper threshold 
values are sequentially adjusted and applied to the image recursively until finding the optimum value that separates the 
best skin region from the non-skin regions as shown in Fig 10 (b). Finally, we applied a seed filling algorithm to the 
image as shown in Fig. 10 (c) using the skin location information from the previous stage, so it isolates the skin regions 
within the scene as shown in Fig 10 (d). 
 

 
Fig 10: The segmentation procedure; (a) input image; (b) thresholded skin; (c) seed filling output; (d) skin region 

extraction. 
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3.2.3 Skin Region Segmentation benchmarking 

In order to evaluate our segmentation algorithm’s performance, we used the publicly available MUCT dataset as our 
ground truth, the subjects in the dataset vary in age and ethnicity and are captured under a number of different lighting 
conditions and head poses. Masks have been segmented manually for over 300 carefully selected photographs from the 
dataset, the photographs where cautiously selected in order to ensure all possible races with different ages, genders, 
different types of clothing, hairstyles and different appearances (such as makes ups, glasses, earrings, etc.) are taken into 
account. All presented results were obtained from the same set of images. We have measured three parameters for each 
output of the four different algorithms including our own algorithm based on the ground-truth data from the dataset 
separately:  

 
• True Positive rate (TPR), is the percentage of correctly detected skin pixels to the actual number of skin pixels 

in the image. 
• True Negative rate (TNR), is the percentage of correctly detected non-skin pixels to the actual number of non-

skin pixels in the image. 
• Accuracy (ACC), is a number that represents the degree of closeness of the overall output of the algorithm to 

the actual true output. For example, a value of 1, means that the overall skin and non-skin pixels detected by the 
algorithm (with respect to the actual skin and non-skin pixels) is completely accurate. 

 
Table 1 True positive, true negative, and accuracy values for various skin detectors 

Skin detector 
Methods TPR (%) TNR (%) ACC 

Soriano and 
Martinkauppi 

method [28,32] 
61.22 94.54 0.879 

Soriano and 
Martinkauppi HSV 
modified version 

78.84 95.56 0.922 

Soriano and 
Martinkauppi 

YCrCb modified 
version 

64.57 92.45 0.869 

Skin Probability 
Map [27,31] 

32.97 94.71 0.827 

 
Proposed Method 85.2 95.2 0.932 

 
Based on our results only 18 out of 300 images were unsuccessful to segment the skin region correctly. This was due to 
two factors, one, the boundaries between the skin and the background was not successfully isolated hence after applying 
the seed filling algorithm the segmentation procedure extended beyond the skin to the background, and secondly due to 
lighting and skin color variation, a huge amount of deviation was implied on the skin region. Hence, causing big 
differences to appear on the skin region, therefore the seed fill algorithm was not able to cope with the amount of 
variations thus failed. But beside these, as it is obvious from the results in table 1 our method is able to detect skin 
regions regardless of the person ethnicity, individual appearance (such as beard, glasses hairstyle etc.), and illumination 
conditions. Fig 11 shows some examples which the algorithm failed to segment the skin regions. 
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Fig 11 examples of the images that our algorithm failed to segment. Column (a) input images, column (b) failed results 

 
We tested our method with other skin detection techniques such as, Skin probability map [27, 31], Soriano and 
Martinkauppi [28, 32] adaptive skin detection method. Additionally, we derived and implemented two other algorithms 
for skin detection based on Soriano and Martinkauppi adaptive skin detection technique. One modified method 
implements Soriano and Martinkauppi technique in YCrCb color space and the second developed method implements 
the Soriano and Martinkauppi technique in HSV color space. Fig 12 shows some results of our method and the 
conventional ones. 
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Fig 12 Examples of the skin color detection results: column (a) input images; column (b) our method;  column (c) 

Soriano and Martinkauppi [28,32]; column (d) HSV back projection; column (e) YCrCb back projection; column (f) 
Skin probability map [27,31]. 

Since the threshold of the skin probability map (column (f)) method is fixed, the algorithm is not able to cope with 
different skin colors and different illumination conditions, and overall shows an inaccurate results compared to the rest 
of the methods conducted in our experiment. Among the back projection methods used and also by referring to table 1, 
HSV color space back projection showed a more promising results, with 78.84% correctly identifying actual skin pixels, 
but despite its high TPR, our method outperforms the HSV back projection technique, with a TPR of 85.2%, More 
importantly, the results show that the algorithm described is much more robust than the other algorithms even if used in 
different lighting conditions and is able to cope with any skin color variations. Fig 13 illustrates the effectiveness of our 
skin segmentation compared to four other skin segmentation algorithm mentioned earlier. 
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Fig 13 Comparison of skin segmentation effectiveness 

3.3 Arm Motion Tracking 

The proposed arm motion tracking algorithm is dependent on the correct and accurate segmentation of the skin region as 
derived from the previous stage. The proposed motion tracking algorithm employed the coordinate information of the 
arms contour (which would be extracted in this stage) in each successive frame to keep track of a specific point on the 
arm. The basic constraint of this stage is that we assumed that the subject only shows his/her arm in front of the camera 
according to illustrated in Fig 5(b). The proposed arm motion tracking consists of two components. 

 
• Arm region extraction 
• Contour-based tracking 

 
3.3.1 Arm Region Extraction 

This part of the algorithm aims to isolate the arm region completely from the background to avoid any errors in the 
motion tracking phase. At this stage, we employed the median blur filtering on the image to reduce noise and small 
unwanted regions for an enhanced representation of the arm. Next, we applied a contour extraction process for two 
purposes, firstly to filter out unwanted regions within the scene and secondly, to denote the boundaries of the arm for 
further processing.  
 

 
Fig 14: Arm region extraction. 

As shown in Fig 14(a), the subject presents his arm in front of the camera. Next, we threshold the entire scene based on 
the lower and upper threshold values obtained from the previous stage. Further, we achieve a binary representation 
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image of the skin regions as shown in Fig 114b). At this stage, we can eliminate unwanted regions (example a white spot 
below the arm and small portion of the face as shown in Fig 14b)) and preserve the desired regions (in this case the arm) 
by applying a contour extraction algorithm on to the binary image (Fig 14(c)). Further, filtered the regions based on the 
size of their contour. The size of evaluation is based on the number of points that defines the particular object. Since we 
assume that the person’s arm is situated near the camera (approx. 1m), hence the arm would have the biggest contour 
instead of other objects as compared to the arm contour. The final result of the arm region extraction stage is shown in 
Fig 14(c).  

 
3.3.2 Contour Based Tracking 

After successfully extracting the contour of the arm as shown in Fig 14(c), the final step is identifying the particular 
point of interest on the arm for the purpose of tracking. Further, these coordinate points are recursively passed to the 
next successive frame. The contour of the arm is a sequence of points, which represents the boundaries of the arm. If 
vector C is the extracted contour of the arm it can be expressed as 

 
𝐶𝐶 =  {𝑃𝑃1,𝑃𝑃2,𝑃𝑃3 … }                                                                                           (1) 

 
Where 𝑃𝑃1 = (𝑥𝑥1,𝑦𝑦1),𝑃𝑃2 = (𝑥𝑥2,𝑦𝑦2),𝑃𝑃3 = (𝑥𝑥3,𝑦𝑦3) and so on are the coordinate points corresponding to a specific point 
on the arm. In this paper, we refer coordinate points as a specific column and row on the 2D. For example, a coordinate 
point of (100, 30) refers to the point on the image, where the 100th pixel (starting from the top left corner of the image as 
the origin of our coordinate system) in the horizontal line (x-axis or column) meets the 30th pixel from the vertical line 
(y-axis or row) of the image. Similarly, if we tend to track the tip of the fingers, we assign the algorithm to only pass the 
coordinate point associated with the finger tips on the arm contour (in this case 𝑃𝑃1 which is located at the tip of the 
fingers) to the next frame each time. The points on the arm contour starts from the tip of the finger 𝑃𝑃1(shown in Fig 15) 
and sequentially progresses clock wise until it reaches 𝑃𝑃1 again. Due to this predictability of spacing of the points of the 
arm’s contour, we are able to estimate any point on the arm by assigning the appropriate coordinate point. Fig 15 shows 
how we have extracted four points on the arm contour namely the finger tips, forearm_1, biceps and forearm_2 as our 
reference points for further calculation. Below shows the mathematical expression on how we calculate the points as 
mentioned. 
 

 
Fig 15: Samples of points estimated on the arm 

Where 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the first point on the arm contour, 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_1,𝑃𝑃𝑏𝑏𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏 ,𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_2, are expressed as follow.  
 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓    = 𝑃𝑃1 = (𝑥𝑥1,𝑦𝑦1)                                                                                     (2) 
 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1    =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑐𝑐𝑇𝑇𝑛𝑛𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑐𝑐 𝑝𝑝𝑇𝑇𝑝𝑝𝑛𝑛𝑇𝑇

4
                                            (3) 

 

𝑃𝑃𝑏𝑏𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏         =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑐𝑐𝑇𝑇𝑛𝑛𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑐𝑐 𝑝𝑝𝑇𝑇𝑝𝑝𝑛𝑛𝑇𝑇

2
                                            (4) 
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𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_2  =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑐𝑐𝑇𝑇𝑛𝑛𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑐𝑐 𝑝𝑝𝑇𝑇𝑝𝑝𝑛𝑛𝑇𝑇

4/3
                                            (5) 

 
The velocity of any point on the arm can be obtained by taking into account the duration it takes for the point to move 
from one location to another in each consecutive frame, which can be described as 

 
 𝑉𝑉 = ∆𝑑𝑑

∆𝑓𝑓
                                                                                                  (6)

 
 

Where V is the velocity of the motion, ∆𝒅𝒅 is the displacement or the amount of shift the targeted point makes in space at 
each successive frame, and ∆𝑇𝑇 is the duration it takes for each frame to be executed multiplied by the number of frames 
(nF) at the instance when the motion ends. In our case with the Lenovo ideapad S410p Intel core i7 CPU built in 
webcam each successive frame is executed every 0.0016s, and the displacement and duration of a motion is calculated as  
 

∆𝑑𝑑 = �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2                                                                  (7)    
 

∆𝑇𝑇 = (0.0016 × 𝑛𝑛𝑛𝑛)                                                                             (8)  

Where �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2 is the distance between the start and the end points of the completed motion. Fig 16 
illustrates a simple superimposed wave motion of the arm starting from 𝑃𝑃1 and ending at 𝑃𝑃2.  
 

 
Fig 16: Velocity evaluation. 
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The calculated velocity has a unit of pixels per second and its numerical value represents the rate at which a point has 
moved in space with respect to frame reference. In order to have a perspective of how fast or how slow the velocity of 
the motion actually is, we can either scale down the corresponding value by dividing the whole number by an integer or 
use a calibrated camera in order to have physical units of measurements. Fig 17 shows three different types of motion, 
we can identify using our velocity calculations. They are no motion, a slow-motion act, and a fast motion act. 
 

 
Fig 17: Velocity evaluation. (a) No motion; (b) slow motion; (c) fast motion. 

3.4 Range of Angular Motion Evaluation  

To evaluate the range of angular motions performed by the arm, we construct a skeleton structure comprising of two 
segments linked by a revolute joint (see Fig 18) as a representative of the arm model. No shape modeling is required in 
our method (example modeling the limb as truncated cones). Two degrees of freedom (DOF) are assigned to each 
segment.  

 

 
Fig 18: Arm coordinate system 

Where 𝑥𝑥𝐸𝐸  and 𝑦𝑦𝐸𝐸 are the two axis used for the angular motion calculation of the elbow, and the 𝑥𝑥𝑊𝑊 and 𝑦𝑦𝑤𝑤 are the two 
axis used for the angular motion calculation of the wrist. 
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3.4.1 Wrist Position Estimation 

In this section, we will estimate the position of the wrist by utilizing the contour coordinate information extracted earlier. 
Additionally, we implement a minimum bounding rectangle algorithm around the arm contour in order to use its aspect 
ratio (width divided by the height of the rectangle) information to know the status of the arm at all time that is to know if 
the arm is extended or bent (Fig 19). The wrist position is estimated by identifying the two points on the arm contour 
that are near the wrist region (Fig 19). 
 

 

Fig 19:  Points surrounding the wrist region. 

Consequently, we compute the mid-point using the mid-point formula (Eq. 9) of the two identified points near the wrist 
to get an estimation of the wrist position. Fig 20 shows the estimated wrist position being overlaid on the arm. 
 

�
𝑥𝑥1 + 𝑥𝑥2

2
,
𝑦𝑦1 + 𝑦𝑦2

2
�                                                                                          (9) 

 
 

 
Fig 20: (a) example of arm; (b) the wrist position extraction; (c) the joint visualization. 



Real-Time Automated Contour Based Motion Tracking Using a Single-Camera  
for Upper Limb Angular Motion Measurement. pp. 52-77  

 
 

70 
Malaysian Journal of Computer Science, Vol. 33(1), 2020 

 

Furthermore, we implemented a minimum bounding rectangle algorithm around the arms contour and use the aspect 
ratio of the rectangle to know the status of the arm (either flexion or extension). Knowing the status of the arm allows us 
to re-assign the two points near the wrist (Fig 21) differently based on if the arm is extended or bent so we could have a 
more precise estimation of the wrist position. Re-assigning the points is due to the redistribution of the contour points 
when the arm changes its position from being flexed to becoming extended. If the aspect ratio of the rectangle 
surrounding the arm contour is lesser than one it is considered up right (or bent) position. Fig 21 shows the two points 
near the wrist being correctly extracted regardless of the position of the arm. 

  

Fig 21: (a) Different arm positions; (b) correct extraction of two points near the wrist. 

 
 

𝑅𝑅𝑛𝑛𝑐𝑐𝑇𝑇𝑇𝑇𝑛𝑛𝑅𝑅𝑇𝑇𝑛𝑛 𝑤𝑤𝑝𝑝𝑑𝑑𝑇𝑇ℎ
𝑅𝑅𝑛𝑛𝑐𝑐𝑇𝑇𝑇𝑇𝑛𝑛𝑅𝑅𝑇𝑇𝑛𝑛 ℎ𝑛𝑛𝑝𝑝𝑅𝑅ℎ𝑇𝑇

< 1 , (𝑇𝑇𝑛𝑛𝑛𝑛 𝑝𝑝𝑐𝑐 𝑛𝑛𝑇𝑇𝑇𝑇 𝑛𝑛𝑥𝑥𝑇𝑇𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛𝑑𝑑)                                                (10) 

 
 

𝑅𝑅𝑛𝑛𝑐𝑐𝑇𝑇𝑇𝑇𝑛𝑛𝑅𝑅𝑇𝑇𝑛𝑛 𝑤𝑤𝑝𝑝𝑑𝑑𝑇𝑇ℎ
𝑅𝑅𝑛𝑛𝑐𝑐𝑇𝑇𝑇𝑇𝑛𝑛𝑅𝑅𝑇𝑇𝑛𝑛 ℎ𝑛𝑛𝑝𝑝𝑅𝑅ℎ𝑇𝑇

> 1,            (𝑇𝑇𝑛𝑛𝑛𝑛 𝑛𝑛𝑥𝑥𝑇𝑇𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛𝑑𝑑)                                                            (11) 

 
3.4.2 Elbow Position Estimation  
 
To estimate the position of the elbow we apply the same method as we did for finding the wrist position. Fig 22 shows 
the estimated elbow and wrist position on the arm. Finally, we put all the information obtained to create a visual 
perspective of our arm model as shown in Fig 22 (c). 
 

 
Fig 22: (a) example of arm; (b) the elbow position extraction; (c) the joint visualization. 
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Fig 23: (a) example of an arm; (b) wrist, elbow and shoulder joints extraction; (c) joints visualization. 

Proposed wrist and elbow position estimation of the arm is based on DeLisa, Gans, and Walsh [24]. The wrist and elbow 
position points are our reference points for calculating the angular motion of the arm. To calculate the range of angular 
motions of the wrist and elbow we divided our arm model into two pairs of points as reference. The first pair of points 
are used for calculating the angular motion of the wrist as shown in Fig 23(a) and the second pair of points are used to 
calculate the angular motion of the elbow as shown in Fig 23(b). 
 

 
Fig 24: Range of angular motion calculation, for wrist and elbow respectively. 

Positive (negative) rotation of the wrist around the x-axis by angle 𝜃𝜃1 corresponds to wrist flexion (extension) (Fig 
24(a)). Positive (negative) rotation of the forearm around the x-axis by 𝜃𝜃2 corresponds to elbow flexion (extension) (Fig 
24(b)). 
    

𝜃𝜃1 = 2 arctan (𝑦𝑦1−𝑦𝑦2)
�(𝑥𝑥1−𝑥𝑥2)2+(𝑦𝑦1−𝑦𝑦2)2+(𝑥𝑥1−𝑥𝑥2)

                                                             (12) 

 

𝜃𝜃2 = 2 arctan
(𝑦𝑦3 − 𝑦𝑦4)

�(𝑥𝑥3 − 𝑥𝑥4)2 + (𝑦𝑦3 − 𝑦𝑦4)2 + (𝑥𝑥3 − 𝑥𝑥4)
                                                  (13) 

 4.0 EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, the performance of the proposed system is evaluated in two aspects. First, we evaluated the accuracy of a 
proposed vision-based measuring system for upper limb functions against conventional goniometer measuring system. 
The second test is to evaluate the performance of the proposed system with the external camera at different viewing 
angle with respect to goniometer. 

 
In the first setup, it measured the range of angular motions namely, “wrist extension”, “wrist flexion”, “elbow 
extension” and “elbow flexion” by a conventional goniometer. These are performed by the subjects as our ground truth 
data as shown in Fig 25. Furthermore, we repeated and measured the same range of movements from the participants in 
front of proposed vision-based measuring system (Fig 26). The proposed and conventional goniometer system based 
results are shown in Fig 27. 
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Fig 25: Goniometer measurements (a) elbow extension; (b) elbow flexion; (c) wrist flexion; (d) wrist extension 

 

 
Fig 26: The measurements of proposed system (a) elbow extension; (b) elbow flexion; (c) wrist flexion; (d) wrist 

extension 

 

 
Fig 27: Comparison of measurements from a proposed system with a goniometer. 

From Fig 27, it can be observed that proposed angular motion computation is almost accurate and close to the 
conventional measurements of goniometer by a professional physiotherapist. Each column on the table represents the 
value in degrees obtained from the goniometer and proposed system measurement. For example, the first column on the 
table shows a value of 0◦ for both goniometer and proposed system. This means when the subject performed an elbow 
extension exercise both the goniometer and our system produced the same reading. Furthermore, it can be observed the 
almost all the upper limb measuring (whether the elbow/wrist extension/flexion) bar values are almost similar in both 
goniometer and proposed system. Furthermore, Table 2 depicts the average error associated with each particular motion 
performed by the subjects. Where the maximum average error produced by the proposed system is around 1.25 degrees. 
Therefore, from above analysis results, propose measurement system has an acceptable accuracy and efficiency with 
very low average error (degree). In contrast, generally, the physiotherapists may not be able to always accurate to 
measure the range of angular motions using conventional tools such as the goniometer. So the proposed system can be 
considered as a more reliable angular measuring solution. 
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Table 2: The average error associated with each motion. 

Range of Motions Average error (Degree) 

Elbow flexion  0 
Elbow extension  1.25 
Wrist flexion  1.25 

Wrist extension  0.25 
 

In the second test, we measure the performance as the error rate of the proposed system with the external camera at 
different viewing angles with respect to goniometer. We measured different angular rotations made by a goniometer at 
different viewing angles with respect to the position of our external camera. This indirectly shows that how many 
readings from the proposed system and the goniometers actually differ in term of errors. The results of this experiment 
will show that to what extent proposed system is able to produce accurate readings even with the external camera at 
different error based angles in the proposed system. We measured different sets of angles made by the goniometer with 
the camera placed right above it as shown in Fig 28. First, we considered the 0◦ degrees viewing angle, and repeated the 
same procedure for 20◦, 30◦ and 50◦ viewing angles of the camera with respect to the goniometer as depicted in Fig 29. 

   
 

 
Fig 23:  Different viewing angle experiment. 

 

 
Fig 29: Cameras different viewing angles; (a) camera at 0◦ to the goniometer; (b) camera at 20◦ to the goniometer; (c) 

camera at 30 ◦ to the goniometer; (d) camera at 50◦ to the goniometer. 
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Fig 30: The comparison between proposed system angle evaluation and the actual angle at different camera point of 
view. 

In Fig 30, it shows the comparison of the measurement made by the proposed vision-based system at the various point of 
view of a camera. Where, the 0◦ viewing angle column represents the different angles reading bars of the camera 
towards the goniometer. It showed that the proposed system can identical measures the angles once the goniometer has 
0◦ angles. Once the viewing angles of a camera increased 20◦ to 50◦, the proposed system can measure slightly different 
values as compared to actual goniometer readings. For example, when we placed the camera at 50◦ angles towards the 
goniometer and the angle of goniometer is set to 110◦. In result, the proposed system computes the angle of 90◦ instead 
of 110◦, which shows the drift/error of 20◦ angle in the proposed system. However, this concludes that the proposed 
system is more reliable/accurate at lower point of view of cameras angles changes. 
 
5.0 DISCUSSION  

This paper present a single camera based, marker free upper limb measurement system for measuring elbow extension, 
elbow flexion, wrist flexion and wrist extension intended for home-based rehabilitation to monitor the progress of a 
stroke patients. A single camera and a marker free visual tracking system is proposed to reduce the cost of the system 
and to reduce the settings difficulty. The proposed contour based motion tracking is based on the coordinate points 
extracted from the contours of the object that able to overcome prior tracking techniques such Kalman filter, Optical 
flow and Cam-Shift. The proposed method overcome prior Kalman filter method by their simple design and fast 
computation procedure. As the method use predefined points, it able to mitigate Optical flow and Cam-Shift problems. 
Optical flow is based on intensity and Cam-Shift is based on histogram back propagation.  Unlike the proposed 
predefined points, the two methods suffers from various lighting and color conditions that would change the intensity 
and histogram properties.  

 
The contour based motion tracking is divided into skin segmentation and arm modelling for motion tracking. Our skin 
segmentation method adjusts the best values for the lower and upper threshold boundary of isolated skin regions from 
the background to overcome the problem of a fixed threshold value and color histogram adaptive thresholding. This is 
done to cope with different skin colors and different illumination conditions. We utilize the hue, saturation, and value 
(HSV) space which provides a high separation contrast between skin regions and non-skin regions. The proposed 
segmentation method is then compared with four other common skin segmentation methods such as skin probability 
map, HSV back-projection, YCrCb back-projection and RGB back-projection algorithm with the same image database 
(300 images from the MUCT face data base). The results show that our method has an accuracy of 93.2% and a true 
positive detection rate of 85.2%, which outperformed the prior methods. We also introduce a concept of filter truncating 
which applies several small bilateral filters rather than one large filter to allow faster processing time by discarding the 
minor parts of the filter as shown in Figure 8.  

 



Real-Time Automated Contour Based Motion Tracking Using a Single-Camera  
for Upper Limb Angular Motion Measurement. pp. 52-77  

 
 

75 
Malaysian Journal of Computer Science, Vol. 33(1), 2020 

 

In the arm modelling for motion tracking, we formulate mathematical equation that model the points needed for the 
upper limb measurements based on the predictability of spacing of the points of the arm’s contour. The contour based 
motion tracking, which combine the skin segmentation with the arm model is then compared with measurement taken by 
professional physiotherapist on a real human subject. The average error from the subjects for the elbow flexion was zero, 
meaning from all the subjects the elbow extension was correctly measured. The elbow extension measurement had an 
average error of 1.25 degrees, wrist flexion measurement had an average error of 1.25 degrees and finally the average 
error from the wrist extension measurement had a value of 0.25 degrees which overall shows the reliability of our 
system. A test between proposed system angle evaluation and the actual angle at different camera point of view is also 
conducted. The results shows that the error increases with the increase drift of viewing from the 0 degree angle. 
Therefore, the measurement should be taken at lower point of view of the viewing angles. 
 
6. 0 CONCLUSION AND FUTURE WORK 

 
Based on the results obtained, the proposed method has shown its capability to measure upper limb measurement needed 
by the physiotherapist. It produce an accurate and reliable reading of +-1.25 average range of error from actual 
physiotherapist reading. The home-based rehabilitation systems will enable both the patients and physiotherapist to track 
the effect of the suggested treatments. This method can be further extended to other measurements and to measure more 
than one subject. This is possible since camera vision has large angle of view that can be exploited. The progress of each 
individual within the camera view can be monitored more effectively. 
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