
International Journal of Software Engineering and Computer Systems (IJSECS)

ISSN: 2289-8522, Volume 4 Issue 2, pp. 19-37, August 2018

©Universiti Malaysia Pahang

DOI: https://doi.org/10.15282/ijsecs.4.2.2018.2.0046

19

REPRESENTING VARIABILITY IN SOFTWARE ARCHITECTURE: A

SYSTEMATIC LITERATURE REVIEW

U. Haider
1
, E. Woods

2
, R. Bashroush

1

1
University of East London, London, UK

2
Endava, London, UK

Email: uhaider@clemson.edu

ABSTRACT

Variability in software-intensive systems is the ability of a software artefact (e.g., a

system, subsystem, or component) to be extended, customised or configured for

deployment in a specific context. Software Architecture is a high-level description of a

software-intensive system that abstracts the system implementation details allowing the

architect to view the system as a whole. Although variability in software architecture is

recognised as a challenge in multiple domains, there has been no formal consensus on

how variability should be captured or represented. The objective of this research was to

provide a snapshot of the state-of-the-art on representing variability in software

architecture while assessing the nature of the different approaches. To achieve this

objective, a Systematic Literature Review (SLR) was conducted covering literature

produced from January 1991 until June 2016. Then, grounded theory was used to

conduct the analysis and draw conclusions from data, minimising threats to validity. In

this paper, we report on the findings from the study.

Keywords: Variability, Software Architecture, Systematic Literature Review

1 INTRODUCTION

Over the past two decades, the field of Software Architecture has come a very long way,

with increased interest in its application in various application domains. Systems are

becoming more complex and larger in scale reinforcing the need for robust system

architectures. The software architecture of a system is usually designed at the early

stages of the system development lifecycle once initial requirements are understood.

However, in some cases, as in the case of some legacy systems, the software

architecture is defined implicitly and emerges during system development, rather than

being developed explicitly.

The increase in variability in hardware, software, and operating environments, along

with the strong business case for delaying design decisions as long as it is economically

feasible, has required architectures to capture and cater for more complex variability in

order to produce highly configurable and adaptable systems. It is common today to have

systems encompassing thousands of interdependent variability points, making the

process of modelling and maintaining these variability points a cumbersome process.

Variability covers several areas, from the software design and engineering process

itself, to the output of such activities, including requirements, architecture, source code,

test cases, binary code, configuration files, etc. (Svahnberg, van Gurp, & Bosch, 2005).

Representing variability in software architecture: a systematic literature review

20

In this review, we focus solely on representing variability in software architecture

design. Galster and Avgeriou (Galster & Avgeriou, 2011a) discussed that variability in

software architecture can be a difficult activity to manage and comprehend. Thus, to

address this challenge, one would need to understand the variety of challenges faced by

practicing architects when dealing with variability management in practice (Galster &

Avgeriou, 2011a).

Over the last 15 years, a lot of work has been reported that addresses the

representation of variability in software architecture in different domains. Some

approaches have defined variability in software architecture as a way of representing

and reasoning about alternative system implementations (Bachmann & Bass, 2001;

Galster & Avgeriou, 2011b). Similarly, a number of different mechanisms have been

used to represent variability at the architecture level (e.g. Software Product Lines (SPL),

Service-oriented architecture (SOA), etc.). Although it is generally agreed that

variability representation is a key step of the development process, which can affect the

success or failure of a system or a product line (Bashroush, 2010), there seems to be

little consensus on how the representation is best conducted.

Very few Systematic Literature Reviews (SLR) considered variability beyond

Software Product Lines. Galster et al. (Galster, Weyns, Tofan, Michalik, & Avgeriou,

2014) presented an SLR on variability in software systems in which they investigated

variability handling in the various software engineering development phases (from

requirements and design, to testing and maintenance). They found that most of the

studies dealing with variability focused at the architecture and design phases; However,

they did not analyse the modelling approaches or techniques covered within the studies.

In this paper, we present a systematically conducted literature review that capture

and summarizes the state-of-the-art in representing variability in software architecture.

The presentation of the work makes it accessible to practitioners working in the area

who are looking to choose the best variability approach that fits their design needs, as

well as researchers trying to identify areas that require further investigation

The rest of the paper is organized as follows. Section 2 describes the research

methodology and lists the study research questions. Section 3 presents the data and

meta-analysis of the results. Section 4 discusses and answers the study research

questions. And, section 5 reports the study limitations and threats to validity. Finally,

section 6 concludes the paper with final remarks.

2 RESEARCH METHODOLOGY

This section describes the research methodology adopted, namely a Systematic

Literature Review (SLR), referred to as systematic review or review hereafter. “A

systematic review is a well-defined and methodical way to identify, evaluate, and

synthesize the available evidence concerning a particular technology to understand the

current direction and status of research or to provide background in order to identify

research challenges” (Kitchenham & Charters, 2007). This method was chosen because

of the requirement to have a credible, repeatable and fair evaluation of the available

studies on representing variability in software architectures.

The review starts by defining the research questions, followed by a definition of the

search strategy process to be followed (sections 2.1 and 2.2). Then, inclusion and

exclusion criteria are developed to provide a systematic way of selecting among

identified primary studies (section 2.3). Finally, the data has been extracted from the

primary studies to help answer the research questions (section 2.4). Once the data is

U. Haider et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 19-37

21

extracted, grounded theory is used to help analyse and draw conclusions to minimize

threats to validity (discussed in section 5).

2.1 Research Questions

This research addresses concerns that relate to practitioners as well as researchers. As

such, our review covers the following research questions:

RQ1: What approaches have been proposed to represent variability in software

architecture?

RQ2: What is the context and areas of research of the studies employing variability

in software architecture?

RQ3: What are the limitations of the existing approaches to represent variability in

software architecture?

RQ1 is motivated by the need to describe the state-of –the art of how existing

approaches represent variability. RQ2 helps better understand the applicability of each

of the identified approaches, and to analyse any recurring patterns in different domain,

while helping practitioners navigate through the reviewed approaches. We pose RQ3 to

provide an overview of existing challenges in order to provide the directions for further

research.

2.2 Search Strategy

The search string we have adopted to identify primary studies was designed following

the criteria below:

 Extract terms from the topic being researched as well as research questions;

 Then, alternative terms (and synonyms) are included. This also covers terms that

are spelt in different ways (e.g. British English vs American English);

 Based on the papers known to the researchers, related keywords are used to

perform initial search in relevant repositories;

 Include other relevant terms where there is a possibility of identifying further

material related to the topic.

 The identified words and keywords are then combined together in one string

using instructs such as “OR” and “AND”;

 Finally, run the search strings and check relevance of returned results, then

amend accordingly.

Following this strategy, the search string below was adopted:

<< (Variability OR Variabilities) AND (reference architecture OR software

architecture OR architectural) >>

Seven digital repositories (1. IEEExplore; 2. ACM Digital library; 3. Citeseer; 4.

SpringerLink; 5. Google Scholar; 6. ScienceDirect and 7. SCOPUS) were queried for

primary studies. Validity was checked by looking for known papers the authors were

already aware of. All papers checked were found in the identified primary studies.

Representing variability in software architecture: a systematic literature review

22

Papers that we were not able to access online were acquired by contacting the relevant

authors via email.

As an additional measure to ensure the comprehensiveness of the review, a manual

check was conducted of the proceedings of the major conferences (such as ICSE,

WICSA, ECSA and SPLC) and workshops (such as QoSA and VaMoS) that the

researchers were aware of that published relevant papers.

The publication lists of known researchers publishing in the area were also checked

manually. Finally, for the primary studies identified, forward and backward reference

checking was conducted. For backward reference checking, we examined the reference

list of the papers searching for any potential primary studies that had been missed.

Similarly, for forward reference checking, we used search engines to identify citations

to the primary studies that could be relevant to the review. This process helped to

identify a number of additional potential primary studies. In terms of timeline, we

searched for primary studies published between January 1991 and June 2016. The start

date was set to be as early as possible (the earliest relevant primary studies identified

were published in 2002). The search stage of this SLR was concluded in June 2016

(hence the end date), after that, the data extraction stage commenced.

2.3 Study Selection

The outcome from the different initial searches on digital libraries, manual searches,

and known author searches, produced 1053 primary studies. After initial screening by

the authors of this SLR based on title, abstract and keywords and excluding papers that

were irrelevant or duplicates, 139 primary studies were selected. These remaining

primary studies were subject to a more detailed review (of the full papers) where each

paper was checked by three researchers. This process resulted in 30 papers being

excluded. Of the remaining 109 primary studies, forward references (papers citing the

primary study) and backward references (papers cited in the primary study) were

followed which helped to identify a further 13 studies. The resulting 122 papers were

then reviewed by applying the following inclusion and exclusion criteria:

- Inclusion criteria:

 IC1: The primary study proposes or uses an approach to represent variability in

software architecture;

 IC2: In cases where the same content was published multiple times by the

authors, the most recent and complete version was included as the primary

study.

- Exclusion criteria:

 EC1: The primary study addresses variability but not in software architecture

domain.

 EC2: The primary study is in the domain of software architecture, but does not

consider variability. A paper that does not address variability along with

software architecture has no value in answering our research questions.

 EC3: Lack of sufficient details about representing variability in software

architecture to make any useful contribution towards addressing research

questions.

 EC4: The primary study is a short (less than 3000 words) or symposium paper,

opinion, abstract, tutorial summary, keynote, panel discussion, presentation

slides, technical report, proceedings overview (for instance, from a conference,

U. Haider et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 19-37

23

workshop or special issue) or a book chapter. Only books and book chapters that

were published as proceedings of peer-reviewed conferences were included (e.g.

Springer LNCS or LNBIP series). These also had to be available through the

corresponding digital libraries.

This led to the exclusion of 62 papers leaving us with 60 primary studies.

2.4 Data Extraction and Synthesis

On completion of the search and selection steps, data extraction was then conducted on

the selected 60 primary studies to help answer the research questions defined in Section

2.1.

During data extraction, we captured information related to the paper synopsis,

variability approach and the limitations. We made every effort to capture as much

information as possible, but at the same time, kept the data as succinct as possible in

order to avoid any potential influence of a taxonomic or classification framework on our

results.

GoogleDocs was used to collect the extracted data from the different researchers and

the aggregated results were made available in Excel spreadsheets for analysis. Finally,

two researchers independently performed sanity checks on the results and the

differences were reconciled collaboratively.

3 DATA AND ANALYSIS

Once the data extraction phase has been completed, data synthesis and analysis was

conducted on the collected information. In this section, we provide an analysis of the

primary studies in relation to their publication type, venues and trends.

Although we set our search period to start from January 1991 but unfortunately no

studies were found in the 90s decade, the earliest primary studies identified were

published in 2002. This could be due to the timing of the first major paper on the topic

of Software Architecture by Shaw et al. (Shaw et al., 1995) in mid 90’s. It is also worth

mentioning here that no primary studies were identified in 2016. This is because 2016 is

partially covered, when the search and selection process of this study was completed,

and within that duration no such major conferences/workshops were conducted.

Excluding VaMoS 2016 and WICSA 2016, which has been manually scanned for this

review with no relevant studies.

Fig. 1 shows the number of primary studies identified, along with the breakdown of

numbers of papers published via each publication outlet type (Conference, Journal or

Workshop). The data presented shows papers bundled in 5 year brackets to smooth the

effect of conference frequency (e.g. some conferences happen every 18 months, while

others every 12 months) and public funding call trends (e.g. EU funded research

projects addressing a specific challenge tend to start and end during the same time

frame leading to increased paper publications in the area around the end of the funding

period). Looking at the chart, it can be seen that there is an uptrend in research

publications relating to variability in software architecture.

Additionally, it has been observed that the majority of the primary studies were

published in the proceedings of conferences (72%, 43 papers), followed by Workshops

(15%, 9 papers), and then Journals (13%, 8 papers).

Representing variability in software architecture: a systematic literature review

24

Figure 1: Publications per year

4 RESULTS AND DISCUSSION OF RESEARCH QUESTIONS

This section attempts to answer the study research questions by synthesizing and

analysing the data extracted from the primary studies.

4.1 RQ1: What approaches have been proposed to represent variability in

software architecture?

Two major approaches for representing variability in software architecture were

identified in the primary studies: (1) defining variability using Unified Modelling

Language (UML) or one of its extension in the form of another method, domain-

ontology etc., and (2) using an ADL with explicit variability representation

mechanisms. A detailed classification can be found in Table 1.

From the 60 selected primary studies, 48% (29 papers) of the primary studies

presented various variability through UML, in which 23% (14 papers) used a form of

meta-model based on UML class diagram. While 17% (10 papers) represented

variability using other UML diagrams such as component diagram (e.g. (Bastarrica,

Rivas, & Rossel, 2007) (Razavian & Khosravi, 2008) (Sánchez, Loughran, Fuentes, &

Garcia, 2009) (Brito, Rubira, & de Lemos, 2009) (Losavio, Ordaz, Levy, & Baiotto,

2013)), activity diagram (e.g. (Abu-Matar & Gomaa, 2011), (Losavio et al., 2013)) and

sequence diagram (e.g. (Laser, Rodrigues, Domingues, Oliveira, & Zorzo, 2015)).

Finally, 8% (5 papers) extended the UML notation into UML PLUS (Product Line

UML based Software Engineering) method ((Gomaa, 2013) (Albassam & Gomaa,

2013)); Kumbang ((Asikainen, Männistö, & Soininen, 2007), (Myllärniemi et al.,

2012)), a modelling language and an ontology for modelling variability in software

product line architectures from feature and component points of view; and KumbangSec

((Myllärniemi, Raatikainen, & Männistö, 2015)).

 15%

 37%
 48%

0

5

10

15

20

25

30

35

N
u

m
b

er
 o

f
P

ap
er

s

Year

CONFERENCE WORKSHOP JOURNAL

U. Haider et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 19-37

25

Table 1: Variability Representation Approaches

NOTATION
TOTAL

PAPERS
PERCENTAGE SOURCE

UML

Class Diagram 14 23% (Thiel & Hein, 2002b) (Moon,

Chae, & Yeom, 2006)

(Mikyeong, Heung Seok,

Taewoo, & Keunhyuk, 2007)

(Dobrica & Niemelä, 2008)

(López, Casallas, & Hoek,

2009) (Helleboogh et al., 2009)

(Pérez, Díaz, Costa-Soria, &

Garbajosa, 2009) (Dai, 2009)

(de Moraes et al., 2010) (Abu-

Matar & Gomaa, 2011)

(Tekinerdogan & Sözer, 2012)

(Diaz, Perez, Fernandez-

Sanchez, & Garbajosa, 2013)

(Angelopoulos, Souza, &

Mylopoulos, 2015) (Duran-

Limon, Garcia-Rios, Castillo-

Barrera, & Capilla, 2015)

 Other (Component, Activity

 etc.)

10 17% (Bastarrica et al., 2007)

(Razavian & Khosravi, 2008)

(Sánchez et al., 2009)

(Helleboogh et al., 2009) (Brito

et al., 2009) (de Moraes et al.,

2010) (Kim, Lee, & Jang,

2011) (Losavio et al., 2013)

(Laser et al., 2015) (Duran-

Limon et al., 2015)

 Extension (PLUS, Kumbang

 etc.)

5 8% (Asikainen et al., 2007)

(Myllärniemi et al., 2012)

(Gomaa, 2013) (Albassam &

Gomaa, 2013) (Myllärniemi et

al., 2015)

 29 48%

ADL 14 23%

(Hoek, 2004) (Zhang, Xiang, &

Wang, 2005) (Bashroush,

Brown, Spence, & Kilpatrick,

2005) (Satyananda, Danhyung,

Sungwon, & Hashmi, 2007)

(Bashroush et al., 2008) (Yu,

Lapouchnian, Liaskos,

Mylopoulos, & Leite, 2008)

(Peng, Shen, & Zhao, 2009)

(Coelho & Batista, 2011)

(Haber, Rendel, Rumpe, &

Schaefer, 2011) (Barbosa,

Batista, Garcia, & Silva, 2011)

(Haber, Rendel, Rumpe,

Schaefer, & van der Linden,

2011) (Haber, Kutz, Rendel,

Rumpe, & Schaefer, 2011)

(Carvalho, Murta, & Loques,

2012) (Silva, Medeiros,

Cavalcante, & Batista, 2013)

OVM 4 7%

(Razavian & Khosravi, 2008)

(Helleboogh et al., 2009)

(Groher & Weinreich, 2013)

(Hwi, Sungwon, & Jihyun,

2013)

XML 2 3%
(de Moraes et al., 2010)

(Myllärniemi et al., 2012)

Representing variability in software architecture: a systematic literature review

26

Other (CVL, LISA etc.) 20 33%

(Thiel & Hein, 2002a)

(Savolainen, Oliver, Mannion,

& Hailang, 2005) (Ortiz,

Pastor, Alonso, Losilla, & de

Jódar, 2005) (Eklund,

Askerdal, Granholm,

Alminger, & Axelsson, 2005)

(Andersson & Bosch, 2005)

(Sinnema, Ven, & Deelstra,

2006) (Satyananda, Danhyung,

& Sungwon, 2007) (Dhungana,

Neumayer, Grünbacher, &

Rabiser, 2008) (Kakarontzas,

Stamelos, & Katsaros, 2008)

(López et al., 2009) (Mann &

Rock, 2009) (Brito et al., 2009)

(Zhu et al., 2011) (Ahn &

Kang, 2011) (Galster,

Avgeriou, & Tofan, 2013)

(Haber et al., 2013) (Pascual,

Pinto, & Fuentes, 2013)

(Groher & Weinreich, 2013)

(Lytra et al., 2014) (Smiley,

Mahate, & Wood, 2014)

23% (14 papers) of the selected primary studies described how to represent

variability using an ADL, with a number of different ADLs adopted. The ADLs used

for addressing variability were:

- xADL 2.0: (Hoek, 2004) uses xADL 2.0 together with several tools to

express variability in xADL (MÉNAGE) and “to select a particular system

instance out of product line architecture (SELECTORDRIVER).” (Peng et al.,

2009) uses xADL 2.0 describing operators and process for merging reference

architecture and application architecture. The result “embodies all the

application differences by new variation points, which makes it possible to

synchronize application and component architectures.”

- vADL: (Zhang et al., 2005) is an ADL that extends the framework of

traditional ADL, and provides variability mechanisms, such as: Customized

Interface, Variable Instance, Guard Condition, Variant Mapping, etc. vADL

is able to describe the assembly of variability in product line architecture.

- ADLARS: (Bashroush et al., 2005) presents the ADL "ADLARS", a 3-view

description of software architecture. This is an ADL with first class support

for embedded systems product lines. It captures the relationship with explicit

support for variability between the system's feature model and the

architectural structures (using keywords like “supported”, “unsupported” and

“otherwise” in the description).

- ACME: (Satyananda, Danhyung, Sungwon, & Hashmi, 2007) describes two

modelling notations, Forfamel for feature models and ACME (Garlan,

Monroe, & Wile, 1997) for the architecture model. They are evaluated using

the Formal Concept Analysis (FCA) technique, using a tool that generates a

concept lattice graph that defines a mapping relationship between feature and

architecture components.

U. Haider et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 19-37

27

- ALI: (Bashroush et al., 2008) presents an ADL called "ALI" (a descendent of

"ADLARS" (Bashroush et al., 2005)) that aims to support product line

engineering (and therefore also variability) as well as non-variant and

individual system architectures.

- Darwin: (Yu et al., 2008) presents a framework with the Darwin ADL (with

elements borrowed from one of its extensions, Koala (Ommering, van der

Linden, Kramer, & Magee, 2000)). The paper proposes “a decision-making

process to generate a generic software design that can accommodate the full

space of design alternatives from a goal model with high variability in

configurations.”

- MontiArc: an ADL designed to model architectures for asynchronously

communicating logically distributed systems. Two studies present extension

to MontiArc: (1) delta-modelling to represent variability - ∆-MontiArc in

(Haber, Rendel, Rumpe, Schaefer, & van der Linden, 2011) and (Haber,

Kutz, Rendel, Rumpe, & Schaefer, 2011), and (2) using hierarchical

variability modelling - MontiArc
HV

 in (Haber et al., 2011). The given

examples were difficult to extend if one is not using MontiArc, but the

proposed variability modelling techniques were not new.

- PL-AspectualACME: (Barbosa et al., 2011) presents PL-AspectualACME

(an extension to AspectualACME (Garcia et al., 2006)) with a graphical

representation of the architectural model. The associated tool interprets the

annotations, adding or removing the correct variant elements in the

specification. (Coelho & Batista, 2011) presents the ADL PL-Aspectual

ACME specifying the architecture for software product lines. The description

is related to a goal model described in a formal visual notation PL-AOV

Graph.

- CBabel: (Carvalho et al., 2012) presents the CBabel language, with features

to support software architecture and contract description with a meta-model

defined for architectural contracts.

- LightPL-ACME: (Silva et al., 2013) presents an ADL (an extension to

ACME (Garlan et al., 1997)) with the aim of having “a simple, lightweight

language for SPL architecture description. It enables the association between

the architectural specification and the artefacts involved in the SPL

development process, including the relationship with the feature model by

categorically defining the variability and the representation of both domain

and application engineering elements.”

Most of the work reported on the use of UML and ADLs for capturing variability at

the architectural level was conducted by their original authors. A small proportion of

these papers (e.g. (Sánchez et al., 2009) (Carvalho et al., 2012) (Albassam & Gomaa,

2013)) reported on work conducted in an industrial setting, but the rest used prototype

implementations based in academia. We discuss the context of the research in more

detail under RQ2 analysis.

Representing variability in software architecture: a systematic literature review

28

OVM (Orthogonal Variability Model) and XML (EXtensible Markup Language)

approaches represent variability in 7% (4 papers) and 3% (2 papers) of the selected

primary studies respectively. Other ways that were identified to capture variability in

the software architecture are: CVL (Common Variability Language) in (Pascual et al.,

2013); LISA (Language for Integrated Software Architecture) in (Groher & Weinreich,

2013); formal modelling languages/framework (e.g. (Sinnema et al., 2006) (Satyananda,

Danhyung, & Sungwon, 2007) (Hwi et al., 2013)) and modelling tools (e.g. (Dhungana

et al., 2008) (Mann & Rock, 2009) (Lytra et al., 2014) (Smiley et al., 2014)), and;

formal/informal textual and visual descriptions such as spreadsheets and process

diagrams (e.g. (Thiel & Hein, 2002a) (Andersson & Bosch, 2005) (Kakarontzas et al.,

2008; Zhu et al., 2011) (Galster et al., 2013) (Groher & Weinreich, 2013)).

It is important to state that the number of studies cross-cut multiple variability

approaches, and accordingly, appear under more than one category in Table 1 (hence

the total of 69 rather than 60). For instance, (Razavian & Khosravi, 2008) and

(Helleboogh et al., 2009) covers UML and OVM; (Iris Groher & Rainer Weinreich,

2013) covers OVM and LISA; (de Moraes et al., 2010) and (Myllärniemi et al., 2012)

covers UML and xml and variability mechanisms simultaneously. Also, (Helleboogh et

al., 2009), (de Moraes et al., 2010) and (Duran-Limon et al., 2015) represent variability

in both UML class and component diagrams.

Overall, UML and ADLs seemed to be the most commonly used approaches for

capturing variability at an architectural level, making up 72% (43 papers) of the selected

primary studies. UML was used in almost half of the studies, where it was extended

through various mechanisms to support variability. While ADLs were mostly used in

the product line domain.

4.2 RQ2: What is the context and areas of research of the studies employing

variability in software architecture?

4.2.1 Research Context (Academia vs. Industry)

The research context of each primary study was classified as either: Academia (if the

research was conducted in academia and by academics with no reference to industrial

usage); Industry (if the research was conducted by industry based researchers or had

direct industrial relevance); or both (when the research was a joint undertaking with

both academic and industrial relevance). From the selected primary studies, we

identified that only a small proportion of research (18%, 11 papers) was conducted in

industry. 73% (44 papers) of the research surveyed was academic while 9% (5 papers)

was classified as joint context (both industry and academia).

U. Haider et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 19-37

29

Figure 2: Research context

Fig. 2 shows that the majority of studies belong to the academia sector (73%), with

18% in industry and 9% joint. However, it was noticeable that the industry initiated

papers doubled between 2011-2015 compared with 2006-2010, while academic papers

only gone up by 9%. Yet, joint papers between industry and academia is going down

with only 1 primary study published between 2011-2015.

4.2.2 Research Context (Theoretical vs. Practical)

Another way the research context of the primary studies was analysed was by checking

whether the reported research had a practical or theoretical focus, or both. The results

are reported in Fig. 3 which shows the majority of the work conducted is theoretical

work with no direct application to practical problems.

Overall, 67% (40 papers) of the primary studies were focused purely on theoretical

work with only 13% (8 papers) addressing practical issues and another 20% (12 papers)

that can be classified as both.

Figure 3: Research relevance

That said, Fig. 3 also shows that the trend is changing with higher percentage of

papers with practical relevance appearing in the past 5 years compared to 2006-2010.

4.2.3 Research Areas

During the analysis, it became clear that the primary studies can be categorised under

four main research areas:

0

5

10

15

20

25

30

35

2001 - 2005 2006 - 2010 2011 - 2015

N
u

m
b

er
 o

f
P

ap
er

s
Year

Academia Industry Both

0

5

10

15

20

25

30

35

2001 - 2005 2006 - 2010 2011 - 2015

N
u

m
b

er
 o

f
P

ap
er

s

Year

Research Practice Both

Representing variability in software architecture: a systematic literature review

30

1. Service Oriented Architecture (SOA)

2. Reference Architecture

3. Software Product lines (including Product Line Architectures -PLA and

Dynamic SPL -DSPL)

4. Other (general Software Architecture)

The breakdown of primary studies per research area is shown in Table 2.

Fig. 4 shows a graphical distribution of the primary studies over the different areas

identified. Noticeably, the work on variability in software architecture is dominated by

work in the area of Software Product Lines.

Table 2: Breakdown of primary studies over research areas

RESEARCH AREA
TOTAL

PAPERS
SOURCE

SOA

2

(Abu-Matar & Gomaa, 2011) (Galster et

al., 2013)

Reference Architecture 4 (Ortiz et al., 2005) (Eklund et al., 2005)

(Dobrica & Niemelä, 2008) (Galster et

al., 2013)

Software Architecture

(General)

11 (Sinnema et al., 2006) (Razavian &

Khosravi, 2008) (Yu et al., 2008) (Pérez

et al., 2009) (Dai, 2009) (Myllärniemi et

al., 2012) (Tekinerdogan & Sözer, 2012)

(Haber et al., 2013) (Gomaa, 2013) (

Groher & Weinreich, 2013)

(Angelopoulos et al., 2015)

SPL/PLA/DSPL 49 (Thiel & Hein, 2002b) (Thiel & Hein,

2002a) (Hoek, 2004) (Zhang et al.,

2005) (Bashroush et al., 2005)

(Savolainen et al., 2005) (Andersson &

Bosch, 2005) (Moon et al., 2006)

(Sinnema et al., 2006) (Bastarrica et al.,

2007) (Asikainen et al., 2007)

(Satyananda, Danhyung, Sungwon, et

al., 2007) (Mikyeong et al., 2007)

(Satyananda, Danhyung, & Sungwon,

2007) (Razavian & Khosravi, 2008)

(Bashroush et al., 2008) (Dhungana et

al., 2008) (Kakarontzas et al., 2008)

(Sánchez et al., 2009) (Peng et al., 2009)

(López et al., 2009) (Helleboogh et al.,

2009) (Pérez et al., 2009) (Mann &

Rock, 2009) (Brito et al., 2009) (de

Moraes et al., 2010) (Kim et al., 2011)

(Zhu et al., 2011) (Coelho & Batista,

2011) (Ahn & Kang, 2011) (Haber,

Rendel, et al., 2011) (Barbosa et al.,

2011) (Abu-Matar & Gomaa, 2011) (A.

Haber et al., 2011) (Haber, Kutz, et al.,

2011) (Carvalho et al., 2012) (Groher &

Weinreich, 2013) (Pascual et al., 2013)

(Gomaa, 2013) (Diaz et al., 2013)

(Albassam & Gomaa, 2013) (Losavio et

al., 2013) (Hwi et al., 2013) (Silva et al.,

2013) (Lytra et al., 2014) (Smiley et al.,

2014) (Myllärniemi et al., 2015) (Laser

et al., 2015) (Duran-Limon et al., 2015)

 66§

U. Haider et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 19-37

31

 § A number of studies cross-cut multiple research areas, and accordingly, appear under more than one
 research area (hence the total of 66 rather than 60)

Figure 2: Breakdown of primary studies over research areas

4.3 RQ3: What are the limitation of the existing approaches to represent

variability in software architecture?

Understanding the limitations of a particular piece of research is an important step

towards understanding its applicability and utility. Unfortunately, in the literature

reviewed for this study, 75% of the papers surveyed (45 of 60) did not make any

attempt to report limitations of the research performed and 2% (1 study, (Eklund et al.,

2005)) did not report the limitations of the research explicitly.

This left 14 studies (23%) that fully or partially identified limitations of their work,

so helping to understand its maturity and the areas of its likely applicability. The

limitations reported can be categorised under the following headers:

-Technical limitations with the research methodology adopted: For example, some

papers only used one case study ((Zhu et al., 2011), (Diaz et al., 2013)), while others

used small unrepresentative study groups ((Andersson & Bosch, 2005)).

- Technical limitations with the approach presented: For example, only addressing

variability at either design time ((Ortiz et al., 2005), (Abu-Matar & Gomaa, 2011),

(Angelopoulos et al., 2015) and (Duran-Limon et al., 2015)) or runtime ((Hoek,

2004), (Pérez et al., 2009)).

- Both of the above (such as (Satyananda, Danhyung, & Sungwon, 2007), (López et

al., 2009), (Brito et al., 2009), (Myllärniemi et al., 2012) and (Groher & Weinreich,

2013))

In reality, almost any piece of research is likely to embody some limitations, so it is

surprising not to find all studies reporting limitations of either type.

5 THREATS TO VALIDITY AND STUDY LIMITATIONS

This section discusses the limitations and threats to validity of our study. As with most

research methods, there are some inherent limitations to the SLR methodology. The first

limitation is the possibility that the search and selection process may not have identified

all of the relevant primary studies. This can be due to various reasons such as the use of

3%
6%

17%

74%

0

10

20

30

40

50

60

SOA Reference
Architecture

Software
Architecture

(General)

SPL/PLA/DSPL

N
u

m
b

er
 o

f
P

ap
er

s

Representing variability in software architecture: a systematic literature review

32

different terminology in primary studies to the one we adopted in the search term

(particularly given that the work covered by this SLR cuts across multiple domains and

research communities). To address this limitation, we have extended the search protocol

and introduced a number of mitigating measures. First, we ran our automated searches

on web sites of prominent publishers (e.g. IEEEXplore) as well as against general

indexing search engines (e.g. Google Scholar) which helps to ensure

comprehensiveness of results as different search engines use different ranking

algorithms. Then, we conducted manual searches on proceedings of known publication

outlets and publication lists of known authors in the domain and cross-examined the

findings with the results produced from the automated search. Finally, we conducted

forward and backward reference checks on the identified primary studies to further

ensure that all of the relevant literature was identified.

Another limitation of SLRs is the exclusion of grey literature, such as thesis

documents, white papers and technical reports. This could be a problem in some areas

such as those where the work is led by industry, as practitioners tend to publish less in

peer-reviewed outlets. However, looking at the analysis of RQ2, and to some extent at

the initial results we had from the automated searches (conducted on general indexing

websites such as Google Scholar), we notice that this study area is largely dominated by

academic researchers with minimal potential for grey literature. Last but not least, there

is the limitation of the language barrier where only primary studies published in English

were searched and analysed. This could potentially mean that relevant primary studies

published in other languages might have been missed. We do not have a strong

mitigation to this threat other than noting that the majority of research in these areas

appears to be published in English and so we do not believe that there is a high

likelihood of significant research in this field remaining unpublished in English for

long.

Given the end date of the search process of June 2016, few papers have been

published since then. However, conducting a basic search just before publication, we

managed to only identify one new primary study that could have been included in the

SLR (Ali & Hong, 2017). Yet, this would not have impacted the findings and

conclusions.

Beyond the inherent SLR methodology limitations, threats to validity can be

classified under four main headers: construct, internal, external and conclusion (Matt &

Cook, 1994).

Some of the threats to construct and internal validity have already been discussed

above. These threats arise from weaknesses in the execution of the research method

adopted. A popular construct validity problem in SLRs is author bias and we have

addressed this by having multiple authors review each primary study and had the overall

process reviewed by an independent researcher (who was not one of the authors). This

was discussed in the section on research methodology (Section 2).

On the other hand, the threat to external validity relates to the applicability of the

results of the study beyond the context where it was conducted. Given that this study

was not limited to one area, but studied multiple areas where variability in software

architecture is used, inductive generalization is considerably strengthened. Moreover,

we have made all of the raw data used for the study available for readers to better help

them understand the reasoning and analysis conducted.

Finally, conclusion validity threats relate to the robustness of conclusions made

based on the data available. A typical threat is when researchers gear conclusions to

agree with their initial hypotheses. In our case, the research did not set any initial

U. Haider et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 19-37

33

hypotheses but rather addressed the research questions with an open view. Additionally,

we based all our conclusions on grounded theory (Martin & Turner, 1986) and other

analysis methods where multiple researchers were involved and independently agreed

on the conclusions made.

6 CONCLUSIONS

This work aimed at capturing and cataloguing the state-of-the-art in representing

variability in software architecture, making it more accessible to practitioners and

researchers alike.

Overall, it can be said that this research area is witnessing an uptrend, especially since

2006 (see Fig. 1), and that work in this domain is starting to mature. In summary, we

found that:

- UML (including various extensions) and Architecture Description Languages

(ADL) were the most commonly used notations to represent variability in software

architecture.

- The work on variability representation at the software architecture level can be

largely mapped to three main research areas: Software Product Lines (SPL);

Reference Architecture; and Service Oriented Architecture (SOA).

- Most of the work surveyed focused on proposing some form of new or improved

design process or traceability technique relating to the development of systems that

include variability.

- The majority of the work conducted (73%) was academically led, much of it with a

fairly theoretical focus (67%).

- Overall, the research in this domain was found to have clear rationale and

objectives, but generally lacking proper validation.

Future work should consider the creation of benchmarks to enable the comparison of the

various techniques and their applicability to certain domains or problems.

REFERENCES

Abu-Matar, M., & Gomaa, H. (2011). Variability Modeling for Service Oriented Product Line

Architectures. Paper presented at the Proceedings of the 15th International Software Product

Line Conference (SPLC).

Ahn, H., & Kang, S. (2011). Analysis of Software Product Line Architecture Representation Mechanisms.

Paper presented at the Proceedings of the Ninth International Conference on Software

Engineering Research, Management and Applications, Baltimore, MD.

Albassam, E., & Gomaa, H. (2013). Applying software product lines to multiplatform video games. Paper

presented at the Proceedings of the 3rd International Workshop on Games and Software

Engineering (GAS).

Ali, N., & Hong, Jang-Eui (2017). Creating adaptive software architecture dynamically for recurring

new requirements. Paper presented at the Proceedings of the International Conference on Open

Source Systems and Technologies (ICOSST) doi:10.1109/ICOSST.2017.8279007

Andersson, J., & Bosch, J. (2005). Development and use of dynamic product-line architectures. IEE

Proceedings -Software, 152(1), 15-28. doi:10.1049/ip-sen:20041007

Angelopoulos, K., Souza, V. E. S., & Mylopoulos, J. (2015, 2015//). Capturing Variability in Adaptation

Spaces: A Three-Peaks Approach. Paper presented at the Proceedings of the 34th International

Conference on Conceptual Modeling (ER 2015), Stockholm, Sweden.

Asikainen, T., Männistö, T., & Soininen, T. (2007). Kumbang: A domain ontology for modelling

variability in software product families. Adv. Eng. Inform., 21(1), 23-40.

doi:10.1016/j.aei.2006.11.007

Bachmann, F., & Bass, L. (2001). Managing variability in software architectures. SIGSOFT Softw. Eng.

Notes, 26(3), 126-132. doi:10.1145/379377.375274

https://doi.org/10.1109/ICOSST.2017.8279007

Representing variability in software architecture: a systematic literature review

34

Barbosa, E. A., Batista, T., Garcia, A., & Silva, E. (2011). PL-AspectualACME: an aspect-oriented

architectural description language for software product lines. Paper presented at the

Proceedings of the 5th European conference on Software architecture (ECSA), Essen, Germany.

Bashroush, R. (2010). A NUI Based Multiple Perspective Variability Modeling CASE Tool. In M. A.

Babar & I. Gorton (Eds.), Software Architecture (Vol. 6285, pp. 523-526): Springer Berlin

Heidelberg.

Bashroush, R., Brown, T. J., Spence, I., & Kilpatrick, P. (2005). ADLARS: An Architecture Description

Language for Software Product Lines. Paper presented at the Proceedings of the 29th Annual

IEEE/NASA Software Engineering Workshop.

Bashroush, R., Spence, I., Kilpatrick, P., Brown, T. J., Gilani, W., & Fritzsche, M. (2008). ALI: An

Extensible Architecture Description Language for Industrial Applications. Paper presented at the

Proceedings of the 15th Annual IEEE International Conference and Workshop on the

Engineering of Computer Based Systems, ECBS.

Bastarrica, M. C., Rivas, S., & Rossel, P. O. (2007). From a Single Product Architecture to a Product

Line Architecture. Paper presented at the Proceedings of the XXVI International Conference of

the Chilean Society of Computer Science (SCCC).

Brito, P. H. S., Rubira, C. M. F., & de Lemos, R. (2009). Verifying architectural variabilities in software

fault tolerance techniques. Paper presented at the Proceedings of the Joint Working IEEE/IFIP

Conference on Software Architecture, 2009 & European Conference on Software Architecture.

WICSA/ECSA 2009.

Carvalho, S. T., Murta, L., & Loques, O. (2012). Variabilities as first-class elements in product line

architectures of homecare systems. Paper presented at the Proceedings of the 4th International

Workshop on Software Engineering in Health Care (SEHC).

Coelho, K., & Batista, T. (2011). From Requirements to Architecture for Software Product Lines. Paper

presented at the Proceedings of the 9th Working IEEE/IFIP Conference on Software

Architecture (WICSA).

Dai, L. (2009). Security Variability Design and Analysis in an Aspect Oriented Software Architecture.

Paper presented at the Proceedings of the Third IEEE International Conference on Secure

Software Integration and Reliability Improvement.

de Moraes, A. L. S., de C Brito, R., Contieri, A. C., Ramos, M. C., Colanzi, T. E., de S Gimenes, I. M., &

Masiero, P. C. (2010). Using Aspects and the Spring Framework to Implement Variabilities in a

Software Product Line. Paper presented at the Proceedings of the XXIX International

Conference of the Chilean Computer Science Society (SCCC).

Dhungana, D., Neumayer, T., Grünbacher, P., & Rabiser, R. (2008). Supporting the Evolution of Product

Line Architectures with Variability Model Fragments. Paper presented at the Proceedings of the

7th Working IEEE/IFIP Conference on Software Architecture (WICSA).

Diaz, J., Perez, J., Fernandez-Sanchez, C., & Garbajosa, J. (2013). Model-to-Code Transformation from

Product-Line Architecture Models to AspectJ. Paper presented at the Proceedings of the 39th

EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA).

Dobrica, L., & Niemelä, E. (2008). An Approach to Reference Architecture Design for Different Domains

of Embedded Systems. Paper presented at the Proc. Software Engineering Research and Practice.

Duran-Limon, H. A., Garcia-Rios, C. A., Castillo-Barrera, F. E., & Capilla, R. (2015). An Ontology-

Based Product Architecture Derivation Approach. IEEE Transactions on Software Engineering,

41(12), 1153-1168. doi:10.1109/TSE.2015.2449854

Eklund, U., Askerdal, Ö., Granholm, J., Alminger, A., & Axelsson, J. (2005). Experience of introducing

reference architectures in the development of automotive electronic systems. Paper presented at

the Proceedings of the second international workshop on Software engineering for automotive

systems, St. Louis, Missouri.

Galster, M., & Avgeriou, P. (2011a). Handling Variability in Software Architecture: Problems and

Implications. Paper presented at the Proceedings of the Ninth Working IEEE/IFIP Conference

on Software Architecture.

Galster, M., & Avgeriou, P. (2011b). The notion of variability in software architecture: results from a

preliminary exploratory study. Paper presented at the Proceedings of the 5th Workshop on

Variability Modeling of Software-Intensive Systems, Namur, Belgium.

Galster, M., Avgeriou, P., & Tofan, D. (2013). Constraints for the design of variability-intensive service-

oriented reference architectures – An industrial case study. Information and Software

Technology, 55(2), 428-441.

Galster, M., Weyns, D., Tofan, D., Michalik, B., & Avgeriou, P. (2014). Variability in Software Systems

- A Systematic Literature Review. IEEE Transaction Software Engineering, 40(3), 282-306.

U. Haider et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 19-37

35

Garcia, A., Chavez, C., Batista, T., Sant’anna, C., Kulesza, U., Rashid, A., & Lucena, C. (2006). On the

Modular Representation of Architectural Aspects. Paper presented at the Proceedings of the

Third European Workshop on Software Architecture, EWSA.

Garlan, D., Monroe, R., & Wile, D. (1997). Acme: an architecture description interchange language.

Paper presented at the Proceedings of the Centre for Advanced Studies on Collaborative

research, CASCON'.

Gomaa, H. (2013). Evolving software requirements and architectures using software product line

concepts. Paper presented at the Proceedings of the 2nd International Workshop on the Twin

Peaks of Requirements and Architecture (TwinPeaks).

Groher, I., & Weinreich, R. (2013). Strategies for Aligning Variability Model and Architecture. Paper

presented at the Proceedings of the 20th Asia-Pacific Software Engineering Conference

(APSEC).

Groher, I., & Weinreich, R. (2013). Supporting Variability Management in Architecture Design and

Implementation. Paper presented at the Proceedings of the 46th Hawaii International Conference

on System Sciences (HICSS).

Haber, A., Hölldobler, K., Kolassa, C., Look, M., Müller, K., Rumpe, B., & Schaefer, I. (2013).

Engineering Delta Modelling Languages. Paper presented at the Proceedings of the 17th

International Software Product Line Conference (SPLC), Tokyo, Japan.

Haber, A., Kutz, T., Rendel, H., Rumpe, B., & Schaefer, I. (2011). Delta-oriented architectural

variability using MontiCore. Paper presented at the Proceedings of the 5th European Conference

on Software Architecture (ECSA), Essen, Germany.

Haber, A., Rendel, H., Rumpe, B., & Schaefer, I. (2011). Delta Modeling for Software Architectures.

Paper presented at the Proceedings of the Dagstuhl Workshop on Model-Based Development of

Embedded Systems (MBEES), Germany.

Haber, A., Rendel, H., Rumpe, B., Schaefer, I., & van der Linden, F. (2011). Hierarchical Variability

Modeling for Software Architectures. Paper presented at the Proceedings of the 15th

International Software Product Line Conference (SPLC).

Helleboogh, A., Weyns, D., Schmid, K., Holvoet, T., Schelfthout, K., & Van Betsbrugge, W. (2009).

Adding variants on-the-fly: Modeling meta-variability in dynamic software product lines. Paper

presented at the Proceedings of the Third International Workshop on Dynamic Software Product

Lines (DSPL {@} SPLC 2009), Pittsburgh, PA, USA.

Hoek, A. v. d. (2004). Design-time product line architectures for any-time variability. Sci. Comput.

Program, 53(3), 285-304. doi:10.1016/j.scico.2003.04.003

Hwi, A., Sungwon, K., & Jihyun, L. (2013). A Case Study Comparison of Variability Representation

Mechanisms with the HeRA Product Line. Paper presented at the Proceedings of the IEEE 16th

International Conference on Computational Science and Engineering (CSE).

Kakarontzas, G., Stamelos, I., & Katsaros, P. (2008). Product Line Variability with Elastic Components

and Test-Driven Development. Paper presented at the Proceedings of the International

Conference on Computational Intelligence for Modelling Control & Automation.

Kim, Y.-G., Lee, S. K., & Jang, S.-B. (2011). Variability Management for Software Product-line

Architecture Development. International Journal of Software Engineering and Knowledge

Engineering, 21(07), 931-956. doi:doi:10.1142/S0218194011005542

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in

software engineering (version 2.3). In. Technical report, Keele University and University of

Durham,.

Laser, M. S., Rodrigues, E. M., Domingues, A., Oliveira, F., & Zorzo, A. F. (2015). Architectural

Evolution of a Software Product Line: an experience report. Paper presented at the Proceedings

of the 27th International Conference on Software Engineering and Knowledge Engineering

(SEKE), Pittsburgh, USA.

Losavio, F., Ordaz, O., Levy, N., & Baiotto, A. (2013). Graph modelling of a refactoring process for

Product Line Architecture design. Paper presented at the Proceedings of the XXXIX Latin

American Computing Conference (CLEI).

Lytra, I., Eichelberger, H., Tran, H., Leyh, G., Schmid, K., & Zdun, U. (2014). On the Interdependence

and Integration of Variability and Architectural Decisions. Paper presented at the Proceedings

of the Eighth International Workshop on Variability Modelling of Software-Intensive Systems

(VaMoS), Sophia Antipolis, France.

López, N., Casallas, R., & Hoek, A. v. d. (2009). Issues in mapping change-based product line

architectures to configuration management systems. Paper presented at the Proceedings of the

13th International Software Product Line Conference, San Francisco, California.

Representing variability in software architecture: a systematic literature review

36

Mann, S., & Rock, G. (2009). Dealing with Variability in ArchitectureDescriptions to Support

Automotive Product Lines: Specification and Analysis Methods. Paper presented at the

Proceedings of the Embedded World Conference 2009, Nurnberg, Deutschland.

Martin, P. Y., & Turner, B. A. (1986). Grounded Theory and Organizational Research. The Journal of

Applied Behavioral Science, 22(2), 141-157. doi:10.1177/002188638602200207

Matt, G. E., & D.Cook, T. (1994). Threats to the validity of research synthesis. In H. Cooper & L. V.

Hedges (Eds.), In the Handbook of Research Synthesis (pp. 503-520). New York: Russell Sage

Foundation.

Mikyeong, M., Heung Seok, C., Taewoo, N., & Keunhyuk, Y. (2007). A Metamodeling Approach to

Tracing Variability between Requirements and Architecture in Software Product Lines. Paper

presented at the Proceedings of the 7th IEEE International Conference on Computer and

Information Technology (CIT).

Moon, M., Chae, H. S., & Yeom, K. (2006). A metamodel approach to architecture variability in a

product line. Paper presented at the Proceedings of the 9th international conference on Reuse of

Off-the-Shelf Components, Turin, Italy.

Myllärniemi, V., Raatikainen, M., & Männistö, T. (2015). Representing and Configuring Security

Variability in Software Product Lines. Paper presented at the Proceedings of the 11th

International ACM SIGSOFT Conference on Quality of Software Architectures (QoSA),

Montréal, QC, Canada.

Myllärniemi, V., Ylikangas, M., Raatikainen, M., Pääkkö, J., Männistö, T., & Aaltonen, T. (2012).

Configurator-as-a-service: tool support for deriving software architectures at runtime. Paper

presented at the Proceedings of the WICSA/ECSA 2012 Companion Volume, Helsinki, Finland.

Ommering, R. v., van der Linden, F., Kramer, J., & Magee, J. (2000). The Koala Component Model for

Consumer Electronics Software. IEEE Computer, 33, 78-85. doi:10.1109/2.825699

Ortiz, F. J., Pastor, J. A., Alonso, D., Losilla, F., & de Jódar, E. (2005). A reference architecture for

managing variability among teleoperated service robots. Paper presented at the Proceedings of

the 2nd International Conference on Informatics in Control Automation and Robotics (ICINCO).

Pascual, G. G., Pinto, M., & Fuentes, L. (2013). Run-Time support to manage architectural variability

specified with CVL. Paper presented at the Proceedings of the 7th European conference on

Software Architecture (ECSA), Montpellier, France.

Peng, X., Shen, L., & Zhao, W. (2009). An Architecture-based Evolution Management Method for

Software Product Line. Paper presented at the Proceedings of the International Conference on

Software Engineering and Knowledge Engineering (SEKE).

Pérez, J., Díaz, J., Costa-Soria, C., & Garbajosa, J. (2009). Plastic Partial Components: A solution to

support variability in architectural components. Paper presented at the Proceedings of the Joint

Working IEEE/IFIP Conference on Software Architecture & European Conference on Software

Architecture. WICSA/ECSA 2009.

Razavian, M., & Khosravi, R. (2008). Modeling variability in the component and connector view of

architecture using UML. Paper presented at the Proceedings of the 2008 IEEE/ACS

International Conference on Computer Systems and Applications.

Satyananda, T. K., Danhyung, L., & Sungwon, K. (2007). Formal Verification of Consistency between

Feature Model and Software Architecture in Software Product Line. Paper presented at the

Proceedings of the International Conference on Software Engineering Advances (ICSEA).

Satyananda, T. K., Danhyung, L., Sungwon, K., & Hashmi, S. I. (2007). Identifying Traceability between

Feature Model and Software Architecture in Software Product Line using Formal Concept

Analysis. Paper presented at the Proceedings of the International Conference on Computational

Science and its Applications (ICCSA).

Savolainen, J., Oliver, I., Mannion, M., & Hailang, Z. (2005). Transitioning from product line

requirements to product line architecture. Paper presented at the Proceedings of the 29th Annual

International Computer Software and Applications Conference (COMPSAC).

Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young, D. M., & Zelesnik, G. (1995). Abstractions for

software architecture and tools to support them. IEEE Transactions on Software Engineering,,

21(4), 314-335. doi:10.1109/32.385970

Silva, E., Medeiros, A. L., Cavalcante, E., & Batista, T. V. (2013). A Lightweight Language for Software

Product Lines Architecture Description. Paper presented at the Proceedings of the 7th European

Conference on Software Architecture, ECSA, Montpellier, France.

Sinnema, M., Ven, J. S. v. d., & Deelstra, S. (2006). Using variability modeling principles to capture

architectural knowledge. SIGSOFT Softw. Eng. Notes, 31(5), 5. doi:10.1145/1163514.1178645

U. Haider et.al /International Journal of Software Engineering and Computer Systems 4(2) 2018 19-37

37

Smiley, K., Mahate, S., & Wood, P. (2014). A Dynamic Software Product Line Architecture for

Prepackaged Expert Analytics: Enabling Efficient Capture, Reuse and Adaptation of

Operational Knowledge. Paper presented at the Proceedings of the Working IEEE/IFIP

Conference on Software Architecture (WICSA).

Svahnberg, M., van Gurp, J., & Bosch, J. (2005). A taxonomy of variability realization techniques:

Research Articles. Software—Practice & Experience, 35(8), 705-754.

Sánchez, P., Loughran, N., Fuentes, L., & Garcia, A. (2009). Engineering Languages for Specifying

Product-Derivation Processes in Software Product Lines. Paper presented at the Proceedings of

the International Conference on Software Language Engineering.

Tekinerdogan, B., & Sözer, H. (2012). Variability viewpoint for introducing variability in software

architecture viewpoints. Paper presented at the Proceedings of the WICSA/ECSA 2012

Companion Volume, Helsinki, Finland.

Thiel, S., & Hein, A. (2002a). Modeling and Using Product Line Variability in Automotive Systems.

IEEE Softw., 19(4), 66-72. doi:10.1109/ms.2002.1020289

Thiel, S., & Hein, A. (2002b). Systematic Integration of Variability into Product Line Architecture

Design. Paper presented at the Proceedings of the Second International Conference on Software

Product Lines.

Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., & Leite, J. C. S. P. (2008). From goals to high-

variability software design. Paper presented at the Proceedings of the 17th international

conference on Foundations of intelligent systems, Toronto, Canada.

Zhang, T., Xiang, D., & Wang, H. (2005). vADL: A Variability-Supported Architecture Description

Language for Specifying Product Line Architectures. Paper presented at the Proceedings of the

Second International Software Product Lines Young Researchers Workshop (SPLYR) in

conjunction with the 9th International Software Product Line conference (SPLC), Rennes,

France.

Zhu, J., Peng, X., Jarzabek, S., Xing, Z., Xue, Y., & Zhao, W. (2011). Improving product line

architecture design and customization by raising the level of variability modeling. Paper

presented at the Proceedings of the 12th international conference on Top productivity through

software reuse, Pohang, South Korea.

