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ABSTRACT The ultimate goal of artificial intelligence is to endow machines with human intelligence.
Studying and simulating electroencephalogram signals is a way to achieve this goal. The human brain
has similar representation abilities for similar visual stimuli. By utilizing this feature, a visual stimulus
electroencephalogram signal decoding model based on Long Short-Term Memory Network Bagging was
proposed to decode and classify human brain signals. And based on this extracted classification model,
a generative adversarial network based on a bi-directional short-term memory network was proposed.
It could generate similar visual stimulus images similar to the human brain and represent the visual
signals of the human brain. These experiments confirmed that the classification accuracy of the research
method in the decoding of electroencephalogram signals reached 91.17%. In terms of extracting visual
characteristics and land-scape features from the electroencephalogram, this research model had the highest
classification accuracy and recall rates, with 98.38% and 97.94%, respectively. This stimulation image
generation model studied had the best actual image generation performance, with an Inception score of 7.27.
The study not only improves the accuracy of electroencephalogram signal classification, but also completes
the re-construction of brain signals into images. It improves the collaborative representation ability of
human-machine collaborative visual cognitive systems and has important significance in brain computer
interaction.

INDEX TERMS Electroencephalogram visual decoding, Bi-LSTM, LSTM-B-GAN, generate adversarial

re-construction, brain computer interaction.

I. INTRODUCTION for decoding EEG signals. However, there are still various

As computers rapidly develop, research on Atrtificial Intel-
ligence (AI) is also receiving increasing attention. The
ultimate goal of its research is to make machines closer to
human thinking and capable of possessing human intelli-
gence. To achieve this goal, it is necessary to study and
simulate the human brain. The cor-respondence between
Electroencephalogram (EEG) activity and visual characteris-
tics is currently the main frontier field of brain science [1],
[2]. Therefore, it is of great significance in Brain Com-
puter Interaction (BCI) to study an effective EEG signal
processing technology and visual representation techniques
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problems with existing brain computer visual representa-
tion technologies. For example, the accuracy of EEG signal
classification is low, the understanding of the machine’s
brain like land-scape is un-reasonable and lacks biological
basis, the collaborative representation ability is poor during
BCI, and the resolution of generated images is poor [3].
In response to the low accuracy of EEG signal classification,
a visual stimulation EEG signal decoding model based on
spatiotemporal features is proposed for high-precision EEG
signal decoding. Un-reasonable understanding of the brain
like land-scape of machines can lead to lower classifica-
tion accuracy compared to EEG classification algorithms.
In this regard, a method based on Long Short-Term Memory-
Bagging (LSTM-B) regression classification is proposed
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in this experiment based on spatiotemporal features. This
method maps human brain visual information onto machines,
enabling machines to better annotate land-scapes based on
human brain vision. In response to the poor representa-
tion ability of BCI, a Long Short-Term Memory-B-Generate
Adversarial Network (LSTM-B-GAN) based on spatiotem-
poral features is proposed in this experiment to constrain the
image generation process and improve the resolution of the
generated image.

The LSTMS-B analysis method is proposed to guide joint
decision-making among multiple networks to improve per-
formance. In response to the weak representation ability
in human-machine collaborative visual cognitive systems,
a transformation of “image EEG signal image” is imple-
mented. The attention mechanism is added to the Bi-LSTM
network through attention gates and attention weighting, and
the Bi-LSTM-AttGW model is proposed to decode EEG
signals.

The combination of GAN and visual EEG signal image
re-construction model can convert EEG signals into cor-
responding land-scape design images, providing technical
reference for communication and BCI between hearing
impaired and mute people.

First, the research status of EEG visual decoding related
research is introduced. Secondly, the specific design of
EEG visual feature land-scape mapping method based on
LSTM-GAN is introduced. The third part is to verify
the algorithm performance and practicality of the research
method through simulation experiments. Finally, a summary
and analysis of the entire content is conducted.

Il. RELATED WORKS

With the continuous development of Al, the related fields of
BCI are also receiving increasing attention. Many scholars
have conducted relevant research on EEG signal decoding.
Robustness and computational complexity are key chal-
lenges in developing motion imagination based on EEG
signal decoding in practical brain computer interface sys-
tems. In response, M T Sadiq et al. proposed an auto-
matic multi-variate empirical wavelet transform algorithm
to decode different motion imagination tasks. These exper-
iments confirmed that the classification performance of this
method was better than existing methods, and the classifica-
tion accuracy had been improved by 23.50% [4]. Noise and
other signal sources can interfere with large EEG capacity,
making it difficult for EEG classifiers to improve and have
limited generalization ability. ] F Hwaidi and T M Chen
proposed a new classification method for EEG signals and
motion imagination signals. This method eliminated noise in
the signal by using a variational autoencoder. Then, in the
experiment, a deep automatic encoder and convolutional
framework were combined to classify EEG motion imagina-
tion signals, and the feasibility of the research model was
confirmed through simulation experiments [5]. D Li et al.
proposed a multi-scale fusion Convolutional Neural Network
(CNN) based on Attention Mechanism (AM), considering
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the insufficient variability of simple network frameworks to
meet complex EEG decoding tasks. This network extracted
spatiotemporal and multi-scale features from signals repre-
sented by multiple brain regions, which was supplemented by
a dense fusion strategy to preserve the maximum information
flow. The effectiveness of the research method was veri-
fied through experiments, and it was also demonstrated that
AM had a positive role in analyzing EEG signal decod-
ing [6]. D H Lee et al. attempted to classify pilots’ mental
states using only EEG signals during the continuous decoding
process. They proposed a multi-feature block-based CNN
and spatiotemporal EEG filter to identify pilots’ current
mental states, demonstrating the feasibility of classifying
various types of mental states in real environments through
experiments [7].

In terms of research related to EEG vision,
X Geng D et al. considered that EEG signals based on
brain computer interface devices had weak, non-linear, non-
stationary, and time-varying characteristics. Therefore, they
proposed a combined EEG signal processing method based
on Independent Component Analysis (ICA), Wavelet Trans-
form (WT), and Common Spatial Pattern (CSP). The high
accuracy of this method was verified through cross com-
parison experiments [8]. Ahirwal MK et al. proposed a
new channel selection technique for the recognition and
characterization of visual stimulation EEG signals. This
method extracted three types of features from EEG signals
through EEG channels and used Support Vector Machine
(SVM), artificial Neural Network (NN), and Naive Bayesian
algorithm to classify visual scenes. These experiments con-
firmed that the average accuracy of this method was 90.53%
[9]. P Nagabushanam et al.considered the combined effect
of feature extraction and classification availability in deep
learning algorithms. To improve the performance of EEG
classification, they proposed a two-layer LSTM and a
four-layer improved NN deep learning algorithm. Compared
to other related architectures, the improved model provided
better performance. However, the accuracy of visual image
classification for this model was still below 90%, and further
research was needed [10]. Long-term attention to repetitive
visual stimuli can cause physiological and psychological
fatigue, making subjects unable to concentrate enough, result-
ing in increased difficulty in decoding visual evoked potential
EEG. In response, Z Gao et al. proposed a parallel multi-scale
CNN based on AM. This network extracted advanced feature
representations through spatial and temporal fusion of two
consecutive convolutional blocks. These experiments con-
firmed the classification performance of this method [11].

In summary, there are still issues in current BCI related
research that do not consider EEG spatial information, such
as a lack of biological basis and weak BCI collaborative
representation ability. Based on this, the decoding and clas-
sification of EEG visual signals under visual stimulation,
the construction of EEG visual characteristic land-scape
understanding models, and EEG visual characteristic land-
scape re-construction are studied based on the spatiotemporal
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EEG visual signal features. This can improve the accuracy of
EEG signal decoding and classification, as well as the quality
of land-scape re-constructed images.

Ill. EEG VISUAL CHARACTERISTIC LAND-SCAPE DESIGN
BASED ON LSTM-GAN

The decoding and classification of visual stimulation EEG
signals, the construction of EEG visual characteristic
land-scape understanding models, and EEG visual char-
acteristic land-scape re-construction are studied. This can
improve the accuracy of EEG signal decoding and classifi-
cation, as well as the quality of land-scape re-construction
images, enabling machines to better represent the recognized
land-scape.

A. A METHOD FOR FEATURE EXTRACTION AND
CLASSIFICATION OF VISUAL STIMULATION EEG

SIGNALS BASED ON LSTM-B

Due to the fact that most machines collect EEG signals as
one-dimensional signals, neglecting the temporal and spatial
information of their own brain signals, traditional visual stim-
ulation EEG signal extraction methods have a problem of low
feature recognition accuracy [12]. A classification model for
decoding visual stimulation EEG signals is established based
on the spatiotemporal features of EEG signals to improve
the classification accuracy of visual stimulation brain signals.
Figure 1 shows a spatiotemporal feature extraction method
for EEG visual signals.
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FIGURE 1. A spatiotemporal feature based classification model for EEG
sensory signals.

In Figure 1, the model mainly consists of two modules:
spatial convolution and temporal LSTM. The general process
of this model is as follows. Firstly, the raw EEG signal
with a size of 128*440 (128 EEG signal leads and 440 time
sampling points) is input into the spatial convolution module
of the model. The spatial convolution module consists of four
one-dimensional convolutional layers connected in series.
Through one-dimensional convolution, the correlations of
different leads at cor-responding spatial scalesare obtained
within cor-responding time intervals, ensuring the temporal
integrity of EEG signal. Secondly, the EEG signals processed
by the spatial convolution module is input into the temporal
LSTM module. On the basis of completing spatial correlation
processing, this module processes each tensor data in the
temporal dimension to ensure the integrity of visual stimu-
lation EEG signal features. Finally, Softmax classification is
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performed on the processed EEG visual features to complete
the decoding and extraction of visual stimulation EEG feature
signals.

After decoding and extracting feature information from
EEG signals, there is a major challenge in completing BCI
that how to represent the extracted visual information on the
machine so that the machine can understand visual land-scape
information remains. The existing EEG signal classifica-
tion methods related to visual land-scape understanding also
have the problem of low classification accuracy. Research
will combine deep learning based on LSTM and ensemble
learning based on Bagging on the basis of extracted EEG
visual signal feature information. Furthermore, an LSTMS-B
human brain activity decoding model is established in this
experiment to implement a visual object classification model
based on images, improving classification accuracy and gen-
eralization ability. This can enable machines to annotate
scenes according to human visual abilities, understand-
ing EEG visual characteristics and land-scapes. LSTMS-B
mainly consists of improved LSTMS and improved Bag-
ging. LSTMS is a model that combines LSTM and Swish
activation functions, which introduces a new reinforcement
learning-based Swish activation function to improve LSTM.
Equation (1) is the Swish activation function [13].

f(x) = x*sigmoid(Bx) (D

In Equation (1), f (x) represents the Swish activation function.
B represents any trainable hyperparameter or constant. The
main function of Bagging is to improve the model’s complex-
ity training ability. This study will improve the generalization
performance and prevent overfitting problems of the model
by improving Boosting in Figure 2.

Sampling 1 }»Train#{ Base Model 1

Sampling 2 }»Train% Base Model 2

Forecast
results

Bootstrapping

Integration Strategy

Sampling T }»Train—b{ Base Model T

FIGURE 2. Schematic diagram of the improved Boosting algorithm.

In Figure 2, Boosting model has the following steps.
First, T random samples are taken through Bootstrapping in
the training set, and T sampling sets are extracted. Then T
basis classifiers are trained using T sampling sets. Finally,
the trained base classifier is integrated into a strategy to
obtain strong classifier prediction results. Bootstrapping is
arandom sampling method, and the data that are not selected
by Bootstrapping in the original data are Out of Bag (OOB).
This study will improve Boosting’s voting strategy on the
foundation of OOB data, which uses OOB data to calcu-
late the reliability coefficient of base classifiers and select
base classifiers for different categories of data. This can
avoid the algorithm’s excessive reliance on high-performance
classifiers and enhance the algorithm’s generalization
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performance. Equation (2) is the reliability coefficient.
OOB_Fj,
>N 00B_Fy,

In Equation (2), C;, represents the n-th weak classifier’s reli-
ability coefficient on class i. i represents different categories.
N represents the base classifiers number. OOB_F;, represents
the F1 score of the n-th weak classifier’s OOB data in class i.
The high reliability coefficient of Boosting indicates good
performance of the classifier on this dataset. This experiment
combines LSTMS with improved Boosting to obtain the
human visual land-scape activity decoding model LSTMS-B.
Figure 3 shows the decoding schematic diagram of
LSTMS-B’s brain visual land-scape activity.
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FIGURE 3. Schematic diagram of LSTM-B brain visual decoding.

In Figure 3, LSTMS-B introduces LSTMS as a classifier
to decode human visual activities based on the traditional
Bagging. And the training results of classifier are weighted
and verified using OOB data, and an improved voting strategy
is used for decoding and classification. The general process of
LSTMS-B is as follows. First, EEG stimulus image category
data are divided into a training set and a testing set, and T sam-
pling is performed on the training set through Bootstrapping
to obtain T sampling sets. Secondly, LSTMS classifier is used
to train the base classifier on sample set in T, and the OOB
data cor-responding to the training samples are collected
to calculate the reliability coefficient. The cor-responding
weight of the classifier is obtained through the reliability
coefficient. Finally, the base classifier is connected with the
cor-responding weights of the classifier, and an improved
voting strategy is used to predict test set’s visual land-scape
category. Due to the improved voting algorithm and majority
voting strategy in LSTMS-B increasing the complexity of the
model, the study will introduce asymptotic time complexity
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for algorithm complexity analysis. Equation (3) represents
the computational complexity of the specific model.

10
Tstus—s = D [BWh+d*h+h)+1*11 (3)

In Equation (3), T1s7ms—p represents the computational com-
plexity of LSTMS-B. & represents the hidden layer’s size. d
represents EEG channels number, which is the input size. /
represents the number of the categories. Equation (4) repre-
sents the number of the parameters.

Trstms = 4(h*h +d*h + h) + h*1 4)

In Equation (4), Trstms represents the number of the param-
eters.

B. DESIGN OF EEG CHARACTERISTIC STIMULATION
IMAGE GENERATION MODEL BASED ON LSTM-B
IMPROVED GAN

This study completes the extraction of EEG visual specialties
by constructing an LSTM-B model, enabling machines to
understand and recognize EEG visual characteristic land-
scape. However, it is necessary to express the human brain
visual land-scape extracted by the machine to achieve BCI,
that is, reconstructing the EEG visual land-scape. Through
human-machine interaction, machines can better represent
the cognitive land-scape. Therefore, a conditional spectral
normalization generation adversarial network for visual stim-
ulation re-construction will be established based on the
decoding and classification of visual stimulation EEG signals
using LSTM-B. AM and bi-directional LSTM are combined
to analyze visual stimulation brain signals. While ensuring
the accuracy of EEG signal classification, the number of the
parameters of the model will be appropriately reduced and the
training efficiency will be improved. This study introduces
neural AM into a deep learning framework and proposes an
impact separation method based on AM and LSTM. Figure 4
shows the internal schematic diagram of LSTM neurons
introducing attention gates.

FIGURE 4. Internal schematic diagram of attention gate LSTM neurons.

In Figure 4, AM is used to replace the forget gate. The
main function of the forget gate is to determine the location
where historical information is deleted and add information
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at that location, which plays a role in updating the cell
state. Equation (5) represents the state update of the forget
gate [14].

Ct =f¢*Ct—1 + (1 —fi)a (5)

In Equation (5), ¢; represents the cell output state at the
current ¢ time. ¢;— represents the output state of the cell at
the previous moment. a; represents the cell candidate value.
f: represents the weight parameter of cell candidate values.
In Figure 4, the research method uses attention gates instead
of forgetting gates, while coupling the input gate with atten-
tion gates to reduce the internal parameters of NN, enabling
neurons to capture more correlated historical location infor-
mation. Equation (6) represents the improved neuron cell
state update operation.

fi= S(V]?k tanh(chl,l)) ©6)

In Equation (6), f; represents the update status of cell at the
current ¢ time. § represents the weight of the candidate value.
V¢ and Wy are both parameters in attention gates. ¢, repre-
sents the output state of neuron cell at the previous moment.
This method has the effect of reducing the dimensionality
of training parameters compared to ordinary long short-term
attention networks. To increase the cognitive saturation of
the model and focus too much attention on important EEG
features, research will set attention weight coefficients in the
output stage of model. Figure5 shows a bi-directional LSTM
with attention weighted layers.

h

Softmax

+

Calculate energy (€

Bl

X

FIGURE 5. Bi-LSTM network with attention weighted layer.

Figure 5 defines the matrix H = [hy, hy, ..., hr], which
includes the output of all hidden layers. The energy of each
feature is calculated by setting the attention weight matrix.
Finally, the weight coefficients for feature selection are deter-
mined through Softmax operator calculation. Equation (7)
represents the energy and weight coefficients.

[ Energy = ReLU(H*W,)*W,

7
Weight = soft max(Energy) ™

41900

In Equation (7), Energy represents the attention feature
energy. W1 and Wyrepresent the sample weights with the
dimensions of N*N and N*1, respectively. Weight represents
the attention weight, which is the contribution value of each
time point to visual recognition. After attention weighting,
Equation (8) is the final weight matrix used for the represen-
tation of the visual output.

h = H™*Weight )

In Equation (8), h represents the weight matrix used for the
representation of the visual output. H' represents the trans-
posed matrix ofthe matrix H.

On the basis of improving the bi-directional LSTM classi-
fication of AM, this study will introduce the SNGAN method
to analyze visual stimulation brain signals, that is, estab-
lishing LSTM-GAN to stimulate machine image generation.
This model introduces spectral normalization technology to
make discriminator stabilized and controls Lipschitz constant
by constraining each layer’s spectral norm of discriminator.
Equation (9) represents the output and output relationship of
the model.

Xp = an(Wyxy—1 + by) 9

In Equation (9), x, represents the output value of the n-th
layer network. x,,_ represents the input value of the n-th layer
network. a,(-) represents the n-th layer network’s nonlinear
activation function. W, represents a parameter matrix. b,
representstheoffset. The output gradient of this model after
Lipschitz constraints is represented by Equation (10).

V(D2
= [CyWn ...CiWill2 < ICN 2 [IWN Iz - - [IC1I2 [Will2 a
(10)

In Equation (10), f (x) represents the output of the model. ||-||
represents a differential operator. ||Cy ||, represents the spec-
tral norm ofthe matrix W,. Cy represents the diagonal matrix
of the cor-responding layer. Due to the maximum spectral
norm of the diagonal matrix being 1, Equation (10) can be
simplified to ensure that the model output satisfies Lipschitz
constraint. Equation (11) represents the output gradient of the
simplified model.

Ve (f ol
WN W1 N Wi B
Vo e - 1., sowy =1 ab

In Equation (11), o(Wy) represents the maximum singu-
lar value of the matrix W. Lipschitz constraint = 1 can
be satisfied by dividing the network parameters with the
layer parameter matrix’s spectral norm. In Figure 6, the
spectral normalization technique is introduced to stabi-
lize the discriminator for stimulating the image generation
of LSTM-GAN.

In Figure 6, LSTM-GAN is mainly composed of two
modules, including the LSTM-based EEG signal visual fea-
ture encoding and classification module and the GAN-based
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Visual feature classification module for EEG signals based on LSTM
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FIGURE 6. Schematic diagram of LSTM-GAN model.

stimulus image generation module. In the LSTM-based EEG
signal visual feature classification module, the bi-directional
LSTM fused with AM is studied as an encoder for this model.
Low-dimensional visual EEG features are extracted from the
original visual EEG signals of the human brain, processed,
and finally encoded into EEG visual feature signals contain-
ing directional content. At this time, the eye EEG signals are
associated with specific image categories. And this research
will also verify and analyze the classification effectiveness
of EEG features. The stimulation image generation mod-
ule based on GAN will encode EGG visual features and
influence noise in the experiment. And a GAN generation
network will be added to generate images that are consistent
with brain stimulation response. GAN generation network is
a normalized generation adversarial network composed of
discriminators and generators, cor-responding to EEG fea-
ture categories, to generate images cor-responding to EEG
visual features. Due to the limited number of image samples
used for EEG signal collection, this model will train GAN
in two stages to fully utilize the selected images and their
categories. In the first stage, GAN will be trained using
ImageNet images that are not used for EEG signal collection.
After the iteration is completed, the pre-trained model will
be finely tuned using the cor-responding EEG features in the
second stage to generate higher image quality. To prevent
excessive optimization of GAN by penalty gradients, this
study will introduce Hinge function as objective loss function
to evaluate the degree of optimization. Equations (12)-(13)
represent the loss functions.

Vp(G, D) = Ez~p 4, (x)[min(0, —1 + D(x |y))]
+ Ez~p,(x[min(0, =1 — D(G(z|y) [yN] (12)

In Equation (12), Vp(G, D) represents the loss of the gener-
ated images. P4z (x) represents the true sample distribution.
D(x |y) represents the discrimination result of a real image
under the constraint of the conditional vector y. Pz (x) repre-
sents the distribution of the generated false samples. G(z |y)
represents the generation of the noise z and the condition
vector y. E represents the expected operator. D(G(z|y) |y)
represents the discrimination result of the generated image
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under y.
VG(G, D) = Ez~p,(x[min(0, =1 — D(G(z|y) [y»] (13)

In Equation (13), V5(G, D) represents the generated image.
Pz(x) represents the distribution of the generated false sam-
ples. G(z|y) represents the generation of the noise z and
the condition vector y. E represents the expected operator.
D(G(z |y) |y)) represents the discrimination result of the gen-
erated image under y.

IV. EXPERIMENTAL AND ANALYSIS OF EEG VISUAL
FEATURE DECODING CLASSIFICATION AND LAND-

SCAPE GENERATION BASED ON LSTM

Experiments were conducted on different methods to verify
the feasibility and superiority of this research model. They
include LSTM EEG signal decoding and classification model
based on spatiotemporal EEG visual signal features, LSTM-
B image land-scape cognitive classification model based on
EEG visual features, and LSTM-B-GAN generation adver-
sarial image re-construction model considering AM.

A. VISUAL EEG SIGNAL FEATURE EXTRACTION AND
CLASSIFICATION RESULTS BASED ON SPATIOTEMPORAL
FEATURES

The visual stimulus image dataset for this study was derived
from ImageNet dataset, and a subset of 20 image classes
was selected as the dataset for this experiment. This data set
contains 20 distinct and easily recognizable object images,
each includes 50 images, or a total of 1000 images [15].
The specific information of the 20 image categories in the
ImageNet data set is shown in Table 1. The images in this data
set can be divided into several categories: food, animals, daily
necessities, musical instruments, and transportation tools.
This study used four experimenters to collect brain visual
signals, with a total of 4000 visual feature EEG signals used
for algorithm validation experiments. The hardware device
configuration used in the study is as follows: processor Intel
Core 17-8700k, main frequency 3.70GHz, and graphics pro-
cessor NVIDIA GeForce GTX 1080. The software used in
the study is Tensorflow1.8, Python 3.0 and MySQL5.7. The
ratio of training data set to validation data set is 7:3. The
layer number of LSTMS_B neural network is 1, the input
dimension is 128, the hidden layer output dimension is 128,
the output layer dimension is 40, and the batch size is 16,
the optimizer is Adam, the learning rate is 0.001, and the
attenuation factor is 0.5. Table 1 shows the selected ImageNet
subset image categories.

Classification accuracy and F1 score were used as the
evaluation criteria for the visual feature classification perfor-
mance of EEG signals. And relevant models and research
models were introduced for comparative experiments to
more intuitively analyze the classification performance of
this research model. Specifically, Linear Discriminant Anal-
ysis (LDA), LSTM+ReLU, EEGNet, CNN-Visual Geom-
etry Groupl6 (CNN-VGG16), and CNN-ResNetl01 were
introduced [16].
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FIGURE 7. Comparison of classification accuracy and F1 scores of different models.

TABLE 1. ImageNet data set image category display.

Category number Name Category number Name
0 Banana 10 Capuchin
1 Pizza 11 Hairstreak
2 Shoes 12 Coffee Machine
3 Mushroom 13 Electric guitar
4 Daisy 14 Aircraft
5 Glove 15 Piano
6 Bicycle 16 Pajamas
7 Convertible 17 Radio
8 Mug 18 Jack-o'-lantern
9 Panda 19 Tent

Figure 7 shows the classification results of different
models.

In Figure 7 (a), the proposed EGG signal classification
model based on spatiotemporal features had a relatively high
classification accuracy of 97.17%. Among other classifica-
tion methods for EEG signals, LDA had a relatively low
classification accuracy of 80.56%, while CNN ResNet101
had a higher classification accuracy of 92.93%. Therefore,
compared with common classification methods for EEG
signals, the research algorithm had a significant improve-
ment in classification accuracy. In Figure 7 (b), the F1
score of the research method was also relatively highest at
96.16%, and the relevant algorithms had F1 scores below
92%, indicating that the classification quality of the research
model was relatively highest. Compared with common EEG
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signal classification methods, there was also a significant
improvement in the classification quality of the model. After
the decoding and classification of EEG signals are com-
pleted, feature extraction was performed on EEG signals.
The original LSTM, LSTM-ReLU (LSTMR), LSTM-Swish
(LSTMS), and LSTM-Minority Subject to Majority Princi-
ple Voting (LSTMS-MV) were introduced for comparative
experiments to verify the generalization performance of the
research model. The performance of EEG feature extraction
model was evaluated in Figure 8 through two evaluation
indicators: classification accuracy and recall rate.

In the model comparison in Figure 8, LSTMS had the
highest classification accuracy and recall rate, with 91.39%
and 90.89%, respectively, among the models that did not
use voting strategies. Among the models considering voting
strategies, LSTMS_B had the highest classification accu-
racy and recall rate, with classification accuracy and recall
rates of 98.38% and 97.94%, respectively. The classification
accuracy of the research model was 11.51% higher than
LSTM, 3.09% higher than LSTMS-MYV, and 6.99% higher
than LSTMS, indicating that the classification performance
of this research model was higher than that of the relevant
models. Meanwhile, this research model had the highest
recall rate, followed by LSTMS-MYV, with LSTMS_B having
a 2.56% higher recall rate than LSTMS-MYV, indicating that
the voting strategy of the research model was superior to
traditional voting strategies. To further validate the feasibility
and superiority of the research model, the model was trained
under the stimulation of 20 types of images in the data set.
Figure 9 shows the training results after 50 iterations.

In Figure 9, as the iteration increased, the classifi-
cation accuracy of each model gradually increased, and
finally reached a stable state in a relatively short time
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after 50 iterations. After 50 iterations, the original LSTM
had the lowest classification accuracy, with a stable accu-
racy of around 85%. The classification accuracy of LSTMS
using the Swish activation function was about 92%, which
was significantly higher than the original LSTM and the
LSTMR model using ReL.U activation function. This indi-
cated that Swish activation function played an important
role in LSTM training and solved the gradient disper-
sion problem to some certain. Meanwhile, the accuracy of
LSTMS was lower than that of LSTMS-B and LSTMS-
MYV, indicating that the combination of basic learning and
multi-classifier decision-making could improve classification
performance. The accuracy of LSTMS-B was higher than
that of LSTMS-MV model, further indicating that study-
ing improved Bagging could effectively improve the model
performance. To further demonstrate the advantages of the
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research algorithm, the EEG feature extraction algorithm
with higher neutral energy in the current research was intro-
duced for comparative experiments in Figure 10.

In Figure 10, the classification accuracy of RNN-based
model and SVM-based model was relatively low, with accu-
racy rates of 81.96% and 84.5%, respectively. Moreover,
SVM classifier could only classify the EEG signals in both
biological and non-biological categories. Pyramid Match
Kernel (PMK) network visual discrimination method con-
taining EEG information had a classification accuracy of
90.8% for three types of EEG signals. BILSTM+ICA+SVM
method used a combination of ICA and SVM to character-
ize EEG signals, with a classification accuracy of 96.68%.
This research model had the highest classification accuracy
of 98.38% when it could also classify 20 types of images,
indicating that the LSTMS-B algorithm proposed in the study
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TABLE 2. K-fold cross validation evaluation.

Variational autoencoder combined
recurrent neural network

K Mean squared Mean

Algorithm in this article

Accuracy (%) error Accuracy (%) squared

error
5 95.66 0.043 96.88 0.020
6 93.98 0.037 94.95 0.013
7 95.55 0.058 96.77 0.036
8 93.84 0.054 94.81 0.027
9 95.82 0.020 97.04 0.011
10 94.26 0.009 95.23 0.009

had good classification ability for the EEG signals. To further
evaluate the robustness of the algorithm model in this article,
K-Fold cross validation (K values between 5 and 10) was
used. Table 2 shows the results of K-Fold cross-validation
evaluation.

From Table 2, the EEG feature classification algorithm
proposed by the research had higher accuracy and smaller
error when the k-value changed from 5 to 10, with an average
accuracy of 95.94% and an average error of 0.0193. However,
the average accuracy and error of the variational autoencoder
combined with the recurrent neural network were 94.85%
and 0.0368, respectively. Therefore, this indicated that the
proposed algorithm had more advantages in classification
performance and efficiency. Da Costa AZ et al. used a deep
residual neural network to construct a classifier for extract-
ing external features from images. After experiments on a
self-built food image data set, the optimal classification accu-
racy of the model was 91.7%. Due to the use of GTX 1080 Ti
GPU to improve training speed, its calculation time was
reduced to less than 200 seconds [17]. Wang J et al. proposed
an improved deep learning neural network based on Hough
transform to achieve high detection accuracy and stability
in the design of product image detection and analysis tools.
The experimental results on bottle image data sets with and
without defects showed that the classification accuracy of this
model was between 85% and 90%, but the computational
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efficiency was not high [18]. Mahajan H B et al. designed
an image and geographic information capture model based
on a LSTM classifier combined with the Internet of Things.
The simulation results of publicly available research data
sets showed that the proposed model was efficient and
robust. The overall accuracy of the model had been improved
by about 5%, and the computational complexity had been
reduced by about 84% [19]. The classification accuracy of
the EEG signal classification model proposed in this study
was relatively high, reaching 97.17%, with high computa-
tional efficiency. It tended to converge after 60 iterations (less
than 60 seconds). Therefore, this indicated that the proposed
model had advantages in classification performance and com-
putational efficiency.

B. GENERATION RESULTS OF EEG CHARACTERISTIC
STIMULATION IMAGES BASED ON LSTM-GAN

After extracting EEG visual feature signals, it is necessary for
the robot to generate cor-responding images of the extracted
visual EEG land-scape features, that is, to represent the visual
features of the human brain and achieve BCI. Relevant mod-
els were introduced for comparative experiments to evaluate
the classification performance of the designed EEG visual
feature classification model considering AM through classi-
fication accuracy in Figure 11.

In Table 3, Bi-LSTM-AttG represents Bi-LSTM with
attention gates. Bi-LSTM-AttW represents Bi-LSTM with
attention weight. BILSTM+ICA+SVM utilizes Bi-LSTM as
EEG signal feature encoder. The model using ICA and SVM
as classifiers is currently the best in EEG signal classification
research. In the comparative experiment, Bi-LSTM-AttGW
with 2 LSTM layers and 128 hidden layers had the highest
classification accuracy, with an accuracy of 98.67%, which
was 2% higher than BiLSTM-+ICA+SVM. This indicated
that the research method had high classification performance
and can effectively decode human brain activities related to
vision. And before the number of hidden layers reached 128,
the classification accuracy also increased as the number
of layers increased. When the hidden layer parameter was
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FIGURE 11. Classification results of 20 types of image stimulation EEG signals tested.

TABLE 3. Comparison of classification accuracy of related models.

Model Classification accuracy/%
LDA 79.69
LSTMR 83.93
EEG-Net 89.16
Bi-LSTM 91.68
BiLSTM+ICA+SVM 96.67
Bi-LSTM-AttG(1,18) 94.99
Bi-LSTM-AttW(1,18) 93.68
Bi-LSTM-AttGW(1,64) 96.34
Bi-LSTM-AttGW(1,128) 98.67
Bi-LSTM-AttGW(1,256) 96.16
Bi-LSTM-AttGW(2,128) 87.95

greater than 128 layers, the classification accuracy gradu-
ally decreased. Due to the increasing number of layers, the
multi-layer NN structure was too complex, resulting in the
model not being able to learn EEG features well. The highest
performing Bi-LSTM-AttGW (1,128) model was applied to
20 types of image data in the data set for model testing in
Figure 11.

In Figure 11, firstly, in the classification test results of EEG
signals stimulated by 20 types of images, the classification
accuracy of this research model was greater than 92.5%, and
the classification accuracy for images of categories 1, 9, 11,
12, 17, and 19 reached 100%. Secondly, the classification
recall rate of the modelwas higher than 93.5%, and the clas-
sification recall rate for images in categories 3, 5, 6, 10, 11,
12, 13, 16, 18, 19, and 20 reached 100%. Meanwhile, in the
model testing results, the F1 scores of this model were all
higher than 91%, and the F1 scores for images of categories
11,12, and 19 reached 100%. These results confirmed that the
visual image magnetic buckle EEG signal classification effect
of the research model was good, with high accuracy, and the
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model had good classification performance. The Inception
score and the Frechet Inception Distance (FID) score were
introduced to evaluate the quality of machine stimulus image
generation in Figure 12.

In Figure 12, the Inception and FID scores of several cur-
rent EEG signal decoding and visual stimulus re-construction
methods were compared with the research methods. They
include stimulus image generation method based on Vari-
ational Auto Encoder (VAE), conditional stimulus image
generation method based on Deep Convolutional Genera-
tive Adversarial Networks (EEG-DCGAN), visual stimulus
re-construction method based on visual guided EEG feature
representation and Conditional Adversarial Nets (VG-GAN)),
and visual stimulus re-construction method with visual con-
sistency preserving term (VG-GAN-VC) based on VG-GAN.
Among them, the highest Inception score of EGG-based
LSTM-GAN was 7.27, and its lowest FID score was 4.13,
indicating that the research method performed well in gener-
ating objective image quality, and these experimental results
had been improved to a certain extent. Figure 13 shows the
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FIGURE 13. Shows the generation results of banana category thorn
images using different models.

visual stimulus generation results of the research method,
VG-GAN-VC, and EEG-DCGAN on category 0 images.
The image generation effect of the EEG-DCGAN model
was the worst, and some of the banana images generated were
not realistic. The image generated by VG-GAN-VC had a
good effect and was more realistic. The image is a banana, but
it is still relatively blurry. The stimulation image generation
effect of the research model was the best, generating rela-
tively real banana image information with high image clarity.
This indicates that the research model can monitor EEG
signals to enable computers to draw images cor-responding
to things or features that the human brain pays attention to in
specific scenes, achieving BCI in the visual land-scape.

V. CONCLUSION

The continuous development of AI has brought machines
closer to human thinking. Achieving BCI has become an
important research goal for Al. However, the existing BCI
still has problems such as low accuracy in classifying
EEG signals, poor collaborative representation ability dur-
ing BCI, and poor resolution in generating images. This
study will address the low accuracy in EEG signal classifi-
cation and propose a visual stimulus EEG signal decoding
model based on spatiotemporal features. A method based
on LSTM-B regression classification was proposed in this
experiment to address the un-reasonable understanding of
the machine’s brain like land-scape, enabling the machine
to better annotate the land-scape according to human brain
vision. A generative adversarial network based on LSTM-B
was proposed in this experiment to address the issue of
poor resolution in generating images from the representa-
tion model to improve the quality of generated stimulus
images. And relevant algorithms were introduced for com-
parative experiments to verify the feasibility and advantages
of the research model. These experiments confirmed that
the proposed EGG signal classification model based on spa-
tiotemporal features had the highest classification accuracy
and F1 score compared to other related models, with 91.17%
and 96.16%, respectively. The comparison results of EEG
visual feature image land-scape cognitive classification mod-
els showed that among the models without voting strategy,
LSTMS had the highest classification accuracy and recall
rate, with 91.39% and 90.89%, respectively. Among the mod-
els considering voting strategies, LSTMS-B had the highest
classification accuracy and recall rate, with classification
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accuracy and recall rates of 98.38% and 97.94%, respectively.
In the EEG visual feature classification model for land-
scapere-construction of machine EEG visual characteristics,
the highest classification accuracy of the research model
was 98.67%. The LSTM-GAN stimulation image generation
model had the best actual image generation effect, with an
Inception score of 7.27 and a FID score of 4.13. These results
confirmed that while improving the classification perfor-
mance of EEG signals, research could also generate stimulus
images that matched the cor-responding category labels and
had higher quality, achieving BCI in the visual land-scape.
Research aims to reconstruct the original image by generating
images with the same visual category of stimulus. Future
research can utilize more effective deep learning methods
to directly extract neural representation visual features from
EEG data.
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