
Should Robotics Engineering Education Include Software
Engineering Education?

Milda Zizyte∗

milda@brown.edu

Computer Science Department

Brown University

Providence, Rhode Island, USA

Trenton Tabor∗

ttabor@andrew.cmu.edu

School of Computer Science

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Figure 1: Summary of prevalence of Robotics Software Engineering Practices [8] in Robotics Bachelors of Science Programs.

ABSTRACT

Multiple universities across the United States now offer bachelor’s

degrees in robotics, which aim to prepare students to work in the

robotics industry. To judge how well these programs are providing

software engineering training, we evaluate whether these programs

teach the software engineering practices that are required for ro-

botics software engineering. We compile an updated list of robotics

bachelor’s degree programs and measure whether the curriculum

of each program claims to teach a specific practice. We find that

some of these practices are not mentioned in the curricula, and that

some are only taught implicitly in long-term project courses. These

project courses vary in scope, guidance, and structure. This implies

that robotics bachelor’s degrees may not be preparing students to

engage with the practices in the workforce.

CCS CONCEPTS

• Computer systems organization → Robotics; • Social and

professional topics → Software engineering education.

KEYWORDS

Robotics Education, Robotic Software Engineering, University Cur-

riculum

∗Both authors contributed equally to this research.

P

This work is licensed under a Creative Commons Attribution International 4.0 
License.
RoSE’22, May 9, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9317-1/22/05.
https://doi.org/10.1145/3526071.3527514

ACM Reference Format:

Milda Zizyte and Trenton Tabor. 2022. Should Robotics Engineering Educa-

tion Include Software Engineering Education?. In 4th International Workshop

on Robotics Software Engineering (RoSE’22), May 9, 2022, Pittsburgh, PA, USA.

ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3526071.3527514

1 INTRODUCTION

In 2007, the first "Robotics" Bachelors of Science was launched

in the US [9]. After 15 years, by our count, there are at least 16

universities in the US offering a robotics degree. These programs

claim to prepare students for industry, research, or academia after

graduation. Developing robots in the real world does not simply

require technical and theoretical skills, but the ability to apply

engineering (including software) practices.

As researchers and practitioners in Robotics Software Engineer-

ing (RSE), we were curious how these programs chose to prioritize

and emphasize the Software Engineering (SE) concepts students

needed in robotics industry. Generally "Engineering" and "Engi-

neering Technology" programs are ABET-accredited for a "general

engineering" category and are given flexibility to emphasize or

teach different topics depending on institution1. Contrast these

with the SE degree, for which IEEE and ACM release curriculum

guidelines every 10 years [1].

Previous work, by Garcia, et al., has studied which RSE practices

are central to robotics, finding trends in common practices, such

as using Agile methodologies and implementing object-oriented

code [8]. We sought to evaluate the degree to which existing RSE

programs actually teach these practices. To do so, we developed

an up-to-date list of robotics programs and then compared a pre-

viously published list of RSE practices to the publicly available

curricula for each program. We find that many of these programs

omit formal training in these common practices, which may lead

to underprepared robotic software engineers.

1Carnegie Mellon University’s "Robotics Major" does not publicly list an accreditation

39

2022 IEEE/ACM 4th International Workshop on Robotics Software Engineering (RoSE)

http://creativecommons.org/licenses/by/4.0/


RoSE’22, May 9, 2022, Pittsburgh, PA, USA Zizyte and Tabor

2 METHOD

To examine how much focus Robotics BS programs put into each of

Garcia’s practices [8], we developed a process of counting mentions

in course descriptions. These course descriptions are often publicly

available and short, providing an efficient window into the topics for

a degree. We built a sufficient corpus of descriptions, by performing

a census of Robotics BS programs offered in the USA.

2.1 University programs studied

We chose our study universities by performing an independent

search followed by reviewing the literature. We only considered

USA-based programs. Initially, we performed a web search for Ro-

botics BS programs. Some programs were in our top results while

others appeared in aggregator lists. We found that our web search

was able to find more programs if the query included the acronym

"ABET", an accreditation board responsible for certifying "Robotics

Engineering" programs. After completing our search, we compared

our list of Bachelor of Science Robotics programs to a less recent

survey [6], providing twomore programs. For the Engineering Tech-

nology programs in our study, we chose to include them alongside

our ten "Robotics Engineering" and one "Robotics" program, since

industry often considers them equivalent [10]. 2. The programs

included in our analysis are summarized in Table 1.

2.2 SE Concepts Used in Robotics Development

We based our list of common SE practices in robotics on Garcia et

al. [8], who conducted 18 semi-structured interviews of robotics

experts and also collected 156 responses to an online survey. While

they were also able to gather data on both the perception of the

difference between SE and RSE and the challenges faced in RSE,

we direct your attention to their RQ1: "What practices are applied

in SE for service robots?". This question was examined in both the

survey and interviews; by comparing both, the authors were able to

discover that practitioners were likely using different terminology

for the same activities. The survey is available and uses SE-specific

terms; e.g. the options for "Which of these software engineering

processes do you apply in your projects?" were:

• Waterfall

• Hybrid (e.g., V-Model, Spiral)

• Agile (e.g., SCRUM, Extreme Programming)

• Other (please specify below)

These options, while they contain examples, do not contain expla-

nations. Many RSE practitioners may lack formal training in these

terminologies and techniques.

From Garcia’s work, we selected the SE practices that were re-

ported to be used by over half of the industry practitioners surveyed.

While Garcia focused on Service Robotics, our experience leads us

to believe that the practices studied are applicable to all RSE.

2.3 Evaluation of coursework

Two authors of this work independently reviewed the coursework

of each program to evaluate to what extent the SE practice was

mentioned in course descriptions.

2We excluded robotics BS programs that did not include a major programming com-
ponent. These programs were from Central Connecticut State University, Gannon
University, and Pennsylvania College of Technology.

Table 1: Bachelor of Science programs analyzed.

Major University

Robotics Engineering
Lawrence Technological

University

Robotics Engineering Worcester Polytechnic Institute

Robotics Engineering University of Detroit Mercy

Robotics Engineering Lake Superior State University

Robotics Engineering University of Michigan

Robotics Engineering University of Hartford

Robotics Engineering Arizona State University

Robotics Engineering Widener University

Robotics Engineering UC Santa Cruz

Robotics Engineering Miami University

Mechatronics and

Robotics Engineering
Trine University

Mechatronics and

Robotics Engineering

Southern Illinois

University Edwardsville

Robotics and

Control Engineering
United States Naval Academy

Robotics Engineering

Technology
Purdue University

Robotics & Controls

Systems Technology
Millersville University

Robotics and

Manufacturing

Engineering Technology

Rochester Institute

of Technology

Robotics

(Second major only)
Carnegie Mellon University

Our categories were:

Not Mentioned - no mention of concept or any related concept

in any course required by the major.

Related Topic Mentioned - concept in question was not mentioned,

but we determined that a related topic was, in at least one course

description. For example, if they discussed hardware debugging,

we considered that to be related to Hardware/Physical Testing.

Mentioned - concept is mentioned by name in at least one course

description, with some exceptions described below.

Emphasized - concept is highlighted in more than one course

description, or the course description makes clear that the concept

is the primary focus of the course.

Because course syllabi were often not publicly available for these

courses, we used only public-facing course descriptions when per-

forming our analysis. Every school provided such course descrip-

tions in a relatively consistent format and level of detail.

To ensure that this methodology would be sufficient for recog-

nizing SE practices if they appeared in a program, we individually

examined 6 SE programs with the same criteria. With the exception

of the Hardware/Physical Testing, in this calibration we found all of

these programs mentioned or often emphasized these practices.

Disagreements of classification were resolved using deliberation.

We ignored courses that were optional or may not be taken by all

students going through a program.

40



Should Robotics Engineering Education Include Software Engineering Education? RoSE’22, May 9, 2022, Pittsburgh, PA, USA

In some situations, we refined our classification criteria based

on an agreed-upon understanding of SE concepts and/or curricula.

These criteria were:

• If a course had a long-term, structured team project compo-

nent, we assigned "related topic mentioned" to the evaluation

of Agile Processes. This was based on the idea that, through-

out a semester or longer, a team would perform some sort

of team-based iterative management and design towards a

final product.

• If a course description uses "modular" as a term or includes

education about the Robotics Operating System (ROS), we

assigned "mentioned" to the evaluation of Component-Based

SE. ROS abstracts robot behavior into separate processes or

components that communicate via specific message-passing

interfaces, and therefore requires thinking about software

development in terms of components.

• If a course had a requirement for writing reports for a long-

term, structured project, we assigned "mentioned" to the

evaluation of Documentation. If this description went in-

depth with the sorts of materials expected in these reports,

such as safety considerations and evaluations of alternatives,

we assigned "emphasized."

• If a course mentions finding customer/industry needs as part

of conceptualizing a project, we assigned "mentioned" to the

evaluation of Requirements Engineering, as we considered

this synonymous with requirements elicitation.

A capstone or capstone-style course is a dedicated design or

project course that involves a long-running group project taken

from conception to implementation. These courses often had "cap-

stone" in the title, but we also included others that fit our definition.

For such courses, we measure the length (in terms) of the capstone-

style course, whether the course involves a final presentation to an

outside audience, and what terms come up most frequently in the

course descriptions, in aggregate.

3 RESULTS AND DISCUSSION

We discovered several patterns in the program curricula, including

which practices are taught and which are overlooked, and how

capstone-style courses are an opportunity for structured SE learn-

ing.

3.1 SE practices taught in robotics programs

We summarize our results in Figure 1, showing an anonymized

distribution of the emphasis given to each of Garcia’s practices

in each program. As evidenced in the figure, there was a wide

variety in coverage for these topics. Most programs had at least

some mention of Object Oriented Programming, while no program

mentioned Code Reviews. Of our study programs, only one required

an explicit course in SE, but all of them mentioned at least one of

these practices in another course.

3.2 Under-emphasized Practices

We noticed several practices that were not explicitly mentioned in

the descriptions in our study. In particular, Agile Processes, Code

Reuse, and the QA practices of Integration/Systems Testing, and Code

Reviews, were not included by name. It is possible that some of these

were overlooked in our review, due to terminology mismatch. Gar-

cia found that many practitioners were performing Requirements

Engineering but claimed not to be. We similarly found that many

programs taught the concepts of Requirements Engineering without

ever using the phrase.

We are concerned about the omission of these practices, since

students expect programs to reflect the activities and skills needed

to succeed in the workplace. If they’re not emphasized in the course

descriptions, students may discount their importance.

3.2.1 Agile Processes. In Section 2.3, we describe counting any

long term structured project as a "related topics mentioned" for

Agile practices. While one description mentioned "cyclic design

iteration" directly, most programs do not describe how they encour-

age students to structure their own engineering practice. Garcia’s

survey showed a clear preference for an Agile development struc-

ture. Recent quantitative research demonstrates that utilizing a

formal SCRUM structure can help students develop these skills [11].

However, we can not tell from course descriptions if students are

required or even encouraged to follow any such process.

3.2.2 Reuse. Garcia identified three important bottlenecks to fur-

ther reuse of code. The first is the code itself, including a number of

interface issues. Then, there is a lack of documentation for reusable

components. Finally there are licensing issues from the available

tools from the community. However, there is still significant reuse

in spite of these difficulties.

Recognizing these issues, it seems that there is a need in robotics

software education to prepare students to overcome and prevent

these issues. We found very little discussion of reuse in the studied

course descriptions. In Figure 1, we show that no programs empha-

sized and only two programs evenmentioned code reuse. Those two

mentioned reusable objects, but there was no mention of design for

reusable libraries or frameworks. It does not appear that students

are, for example, being exposed to designing idioms and patterns

for whole libraries, which may perpetuate the issues in industry.

An added benefit to consciously designing for reusable libraries and

frameworks is that the design documents are themselves useful,

widening the second bottleneck as well.

None of the course descriptions we examined discussed analyz-

ing licenses in the SE process, although these issues are discussed in

capstone courses, as students are integrating a larger system from

many parts. We also didn’t see any mention of the common engi-

neering decision of build vs. buy for custom hardware or software

components, which can have a large impact on a project scope [7].

3.2.3 Quality Assurance Practice. According to Garcia, the two

most common quality assurance practices in RSE are Integration

Tests and Code Reviews. Again, these practices were not empha-

sized in the examined course descriptions, but may be taught or

learned independently by students or experientially learned over

the duration of another course. If these practices are not covered,

however, this mismatch may be critical. We found a lot of men-

tion and emphasis in courses on software design, but much less on

demonstrating that the software does what it was designed to do.

While it can be difficult to build a lesson around code review, we’re

excited to see new techniques in this area [2].

41



RoSE’22, May 9, 2022, Pittsburgh, PA, USA Zizyte and Tabor

3.3 Capstone-style courses

All but one of the programs required a capstone-style course. Most

capstones were two terms long, one was one semester long but a

follow-on to a professional design course, one was two or three

semesters long depending on if a student did a senior project, and

one had three 2-semester sequences spread out over three years.

3.3.1 Audience. Capstone courses all involved presenting the final

project in some structured way. In terms of audience,

(1) one school required a capstone presentation made to a panel

of engineering faculty;

(2) three schools had capstone-style courses that specifically

mentioned industry representatives at final presentations;

(3) one school had a capstone that was sometimes done with

industry partnership, depending on the project;

(4) one capstone sequence included a co-op practicum, where

students worked part-time off-campus in an industry job;

and

(5) the other ten schools that offered a capstone-style course did

not indicate a specific audience for capstone presentations.

We found that several schools used the capstone-style courses

to expose students to industry partners. The prevalence of industry

partners for these specific courses indicates that they are a way

that schools facilitate an interface between students and industry.

Students have an chance to demonstrate their engineering skills

and get direct feedback from industry.

3.3.2 Capstones as SE practicum. One commonality that we no-

ticed across programs was that much of the coverage of agile, doc-

umentation, requirements engineering, and testing practices in the

curricula we studied came from capstone or capstone-style courses.

We also noticed some common themes in their curricula. In par-

ticular, these courses start with identification of needs, then have

students go through a process of specification, design, prototyping,

and final product. Documentation is often emphasized. When eval-

uating common language across the descriptions of these courses

by looking at the most frequent words across all descriptions, we

found mentions of the following categories:

• Teamwork ("teams", "management")

• Forms of communication ("presentation," "report," "proposal")

• Design ("design," "planning," "constraints")

• Implementation ("development," "prototype")

• Evaluation ("testing," "performance," "validation")

• Technical skills ("robotics," "knowledge")

This indicates that students are learning and applying SE in their

capstone-style courses. What we cannot determine from course de-

scriptions alone is whether they are given frameworks for learning

these concepts, or if they are tasked to figure out the concepts by

"learning by doing." Because these courses vary in scope, guidance,

and structure, it is hard to judge how much SE students are being

taught deliberately.

3.3.3 Capstone opportunities. Work in SE education suggests that

a capstone course is an opportune place for students to build "soft

skills," as they are more confident in their technical skills by that

point [3]. For robotics, we see an opportunity to emphasize SE

education in these programs by injecting more structured SE frame-

works in these courses or their prerequisites. If students get the

chance to interface with industry in their capstone-style course, this

is also an opportunity to get real-world feedback on the applicability

of the practices taught.

4 RELATEDWORK

Five years ago, a subset of the programs we studied were bench-

marked for general concepts covered, faculty affiliation, and accred-

itation [6]. That benchmark also examined other degree and minor

programs. Recently, a survey was conducted of Software Develop-

ment skills (among hardware, professional, etc. skills) [4]. Those

skills include some overlap with the practices we examined; for

instance, "Do agile program design" is a subset of the Agile Processes

we examined. Generally, however, these practices are orthogonal

to their skills. There has also been recent analysis in how closely

general SE education aligns with industry trends [5], which found

similar, but smaller gaps between education and practice.

5 FUTURE WORK (FOR OUR COMMUNITY)

From these results, it is clear that the RSE research community needs

to engagewith robotics educators.We need to help them understand

the value of formal SE training for their students. This will require,

on top of research in best practice, research into pedagogy and

advocacy for the importance of our work.

ACKNOWLEDGMENTS

Thanks to our study programs for publishing their descriptions.

REFERENCES
[1] Mark Ardis, David Budgen, Gregory W Hislop, Jeff Offutt, Mark Sebern, and

Willem Visser. 2015. SE 2014: Curriculum guidelines for undergraduate degree
programs in software engineering. Computer 48, 11 (2015), 106–109.

[2] Bariş Ardiç, Irem Yurdakul, and Eray Tüzün. 2020. Creation of a Serious Game
for Teaching Code Review: An Experience Report. In 2020 IEEE 32nd Conference
on Software Engineering Education and Training (CSEE T). 1–5. https://doi.org/
10.1109/CSEET49119.2020.9206173

[3] María Cecilia Bastarrica, Daniel Perovich, and Maira Marques Samary. 2017.
What can students get from a software engineering capstone course?. In 2017
IEEE/ACM 39th International Conference on Software Engineering: Software Engi-
neering Education and Training Track (ICSE-SEET). IEEE, 137–145.

[4] Carlotta A. Berry, Michael A. Gennert, and Rebecca Marie Reck. 2020. Practi-
cal Skills for Students in Mechatronics and Robotics Education. ASEE annual
conference exposition proceedings (2020). https://par.nsf.gov/biblio/10184531

[5] Orges Cico, Letizia Jaccheri, Anh Nguyen-Duc, and He Zhang. 2021. Exploring
the intersection between software industry and Software Engineering education-
A systematic mapping of Software Engineering Trends. Journal of Systems and
Software 172 (2021), 110736.

[6] Joel M Esposito. 2017. The state of robotics education: Proposed goals for pos-
itively transforming robotics education at postsecondary institutions. IEEE
Robotics & Automation Magazine 24, 3 (2017), 157–164.

[7] Kim Fowler. 2004. Build versus buy. IEEE Instrumentation & Measurement
Magazine 7, 3 (2004), 67–73.

[8] Sergio García, Daniel Strüber, Davide Brugali, Thorsten Berger, and Patrizio
Pelliccione. 2020. Robotics software engineering: A perspective from the service
robotics domain. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 593–604.

[9] Michael A Gennert and Craig B Putnam. 2018. Robotics as an Undergraduate
Major: 10 Years’ Experience. In 2018 ASEE Annual Conference & Exposition.

[10] Ronald E Land. 2012. Engineering technologists are engineers. Journal of Engi-
neering Technology 29, 1 (2012), 32.

[11] Christoph Matthies, Johannes Huegle, Tobias Dürschmid, and Ralf Teusner. 2019.
Attitudes, beliefs, and development data concerning agile software development
practices. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). IEEE, 158–169.

42


