2024 IEEE/ACM International Workshop on Designing Software (Designing)

Software Engineering Education: Towards Ethical, Reliable, and Beautiful Software

Aikya Inuganti Madhuri Goyal Mohammad Samarah’
University of Maryland Baltimore University of Maryland Baltimore University of Maryland Baltimore
County County County

ainuganl@umbc.edu

ABSTRACT

In this paper, we present our experience with an innovative
pedagogical approach to software engineering in a graduate-level
advanced software engineering course. Our approach to software
engineering and software design education relies on six
dimensions: 1) restating the goal of software engineering education
to say that software must be conceived of, architected, designed,
developed, deployed, maintained, and managed to be ethical,
reliable, and beautiful; 2) software should be engineered as a
service; 3) apply proven architectural principles; 4) use sound
design principles; 5) create rapid multi-modal prototyping; and 6)
bring the course learning objectives together by creating a term-
long project that creates a solution to a real-world problem using an
iterative process. The results from students’ feedback have been
very positive with students citing the benefits of the course
particularly a) the realignment of software engineering education
goals centered on creating ethical, reliable, and beautiful software,
b) the focus on clean, sound, and efficient architectures, and c)
blending of IEEE SWEBOK, modern microservice architectures,
and emerging approaches from software engineering research and
open source. We plan to continue developing the course and
enhance it in the areas of software reuse, software product design,
Al and software design, design for diverse users, and design for
sustainability.

CCS CONCEPTS

eSoftware and its engineering~Software creation and
management~Software development process
management~Software development methods ¢Software and
its engineering™~Software organization and properties~Extra-
functional properties~Software reliability e Software and its
engineering~Software creation and management~Designing
software~Software design engineering ¢Social and professional
topics~Professional topics~Computing education~Computing
education programs~Software engineering education eApplied
computing~Education~Collaborative learning eSoftware and its
engineering™~Software creation and management~Software
development techniques~Software prototyping ¢Software and its
engineering~Software creation and management~Collaboration
in software development™~Programming

This work licensed under Creative Commons Attribution International 4.0 License.
Designing '24, April 15-14, 2024, Lisbon, Portugal

© 2024 Copyright is held by the owner/author(s).

ACM ISBN 979-8-4007-0563-2/24/04.

https://doi.org/10.1145/3643660.3643950

mgoyall @umbc.edu

msamarah@umbc.edu

KEYWORDS

Software Engineering Education, Software Engineering Graduate
Programs, Software Design, Software Ethics.

Background

The course development was influenced by related works in
software engineering education research and previous experiences
in industry developing both commercial and bespoke products:
including productivity applications, imaging, embedded software
for consumer electronics, and high-speed software subsystems for
storage appliances. In this section, we describe some of the related
works.

In "A Brief Survey of Software Architecture Concepts and Service-
Oriented Architecture," (Valipour et al., 2009) the authors explore
software architecture complexities and introduce service-oriented
architecture (SOA) as an effective framework for web software
development. SOA was a major driver of improved software
applications in the past two decades and the lessons learned from
SOA is the foundation for software as a service and a cornerstone
of the design of our course.

In "SOLID Principles in Software Architecture and Introduction to
RESM Concept in OOP" (Madasu et al., 2015), the authors describe
how design principles affect key aspects such as reusability,
extensibility, simplicity, and maintainability, particularly in
Object-Oriented Programming (OOP). The integration of these
design principles builds a crucial bridge between theory and real-
world applications. SOLID is adopted into the educational
approach of this course while combining it with other design
principles.

In  "Introduction to the Special Issue on Software
Architecture,"(Garlan & Perry, 1995) the authors provide a
comprehensive view of software architecture with a 25-year
perspective that is still relevant today. The paper provides a
historical context of software architectures and a foundational
viewpoint. Additionally in the paper "A Survey on Software
Architecture Analysis Methods" (Dobrica & Niemela, 2002) the
authors introduce evaluation techniques that are still relevant. It is
important as students learn new design approaches to have a solid
grounding of the historical context of related and differing
approaches. The takeaway of these two papers into our approach is
that historical context should influence and guide future design
approaches. Addressing challenges in education, "Software
Engineering Education: Challenges and Perspectives" (Ouhbi &
Pombo, 2020) and "Software Engineering Education in the New
World: What Needs to Change?" (Bass, 2016) advocate for
innovative teaching methodologies. Our approach is similar in that



we were not satisfied with traditional software engineering course
design and sought to improve it by using new methods. These
works highlight the challenges in software engineering education
and advocate for innovative teaching methodologies while
considering industry practices. "C4 Skills in the Engineering
Graduate" (Gupta & Gupta, 2023) adds a market-driven
perspective, emphasizing design-based learning and skills
alignment. This is a fundamental aspect of our course design that it
needs to be focused on the design and building of software
applications and software intensive products. "Ethics Is a Software
Design Concern," (Ozkaya, 2019) brings a critical dimension to our
approach by highlighting ethics as a fundamental design constraint.
This paper predates the global pandemic and the recent introduction
of Al tools to the public. Ethical considerations are even more
critical now as we see Al tools being used throughout the software
engineering process. "The UI Design Process,” (Mclnerney &
Sobiesiak, 2000) acknowledge the prevalent challenges in Ul
design, emphasizing the need for structured processes, effective
communication, and collaboration. In our approach, we identified
beauty is one of the three critical aspects of software both in
external appearance and internal workings.

Expanding on the insights provided by the previously mentioned
papers, in the "Academic Education of Software Engineering
Practices" (Stettina et al., 2013) bring a valuable perspective on the
delicate balance between hands-on activities and academic
reflection in teaching software engineering. Our approach places
great emphasis on practical learning and fostering a dynamic
educational environment. The paper's emphasis on intensive
coaching and agile practices is part of our approach in providing a
comprehensive and effective educational experience.

"Closing the Gap Between Software Engineering Education and
Industrial Needs" (Garousi et al., 2020) significantly addresses the
real-world challenges faced by students entering the software
industry. Our approach provides educators and practitioners
educational curricula that stays ahead of industry by adapting
educational approaches to meet the evolving needs of the software
sector and a new category of software intensive products.

Exploring the ethical dimensions, "Ethics in Information
Technology and Software Use" (Calluzzo & Cante, 2004) reaffirm
our consideration of ethics as a fundamental design constraint in
software engineering. We applied findings from the paper's review
of students' attitudes and perceptions regarding ethical behaviors
into our approach ensuring that our educational framework not only
imparts technical knowledge but also instils a strong ethical
foundation.

Taking lessons learned from SOA, SOLID principles, previous and
current software design and architectures, ethics as a design
constraint, and Ul design, we applied these lessons in the context
of software engineering education challenges, identifying critical
attributes needed in software products today while considering the
special needs of the software engineering practice and the
constantly changing demands of the industry.

1 Introduction

In this paper, we describe an innovative pedagogical approach for
an advanced software engineering course. Our approach consists of
several dimensions and for each one we employ one or more proven

41

software engineering methods. There are six dimensions: 1)
restating the overarching goals of software applications and
systems, 2) employing engineering software as a service, 3) using
multiple prototyping modalities, 4) applying proven architecture
principles, 5) implementing best practice design principles, and 6)
building a term-long project.

The course blends content from a recent textbook on engineering
software as a service using the Ruby programming language and
the Ruby on Rails framework (Fox & Patterson, 2021), the IEEE
Software Engineering Body of Knowledge v3 (Bourque et al.,
1999), and relevant content from emerging software engineering
research, open source, and commercial software. Topical coverage
varies from topic to topic, some material is review of foundational
topics, some is to establish background and context, and some is
given deep coverage.

The first dimension is to restate the goals of software engineering
and software design by emphasizing three attributes. We recognize
that there are many desirable attributes and state that the most
important ones are ethical, reliable, and beautiful. Therefore,
software must be conceived of, architected, designed, developed,
deployed, maintained, and managed to be ethical, reliable, and
beautiful. This is more critical now given the rise of software-
intensive products where software is the main component or the
main product differentiation. Ethical means that all architectural,
design, and construction decisions are made with the user’s privacy
and rights as a priority and that the software is for the service of the
user first and foremost. And it uses the available computing
resources responsibly. Reliable means that the software is safe to
use, and protects the user from accidental mistakes, errors, and
failures. It also means that it works with constraints in the user
environment and fails safely. Beautiful means that the software is
easy to use, pleasing to look at, easy to maintain, and embodies
users’ diversity in a meaningful way. Beauty in this context is not
about style or color but rather a reflection of the beauty and
diversity of its users among itself.

The second dimension is to engineer software as a service by
creating independent, micro, and highly efficient services that can
be combined together to create higher-level functionality. Thus,
significantly increasing engineering software with reuse and for
reuse creating cohesive, independent, and efficient software
components and libraries.

The third, fourth, and fifth dimensions apply proven architectural
and sound design principles and rapid multi-modal prototyping to
engineer software that achieves desired results. Prototyping is
achieved with low-fidelity, high-fidelity, and code-based
prototypes. The chief architectural principles are reuse, cohesion,
decoupling, and aspects among others. The chief design modelling
properties introduced are completeness, consistency, and
correctness along with the 6S checklist based on SOLID and SOFA
principles. The sixth dimension is to create a solution to a real-
world problem, issue, question, or gap using an incremental and
iterative approach using five checkpoints. In the following section,
we describe the dimensions in more detail.



2 Reimagining Software Engineering Education

2.1 Towards
Software:

In the first dimension, students are challenged to rethink and
reimagine the most important attributes of software, software

Ethical, Reliable, and Beautiful

applications, and software-intensive products. Acknowledging that
traditional approaches have served us well in the past but need to
be reevaluated given the rise of software-intensive products and the
complexity of today’s software. The student is introduced to the
concept that software must be conceived of, architected, designed,
implemented, built, deployed, maintained, and managed with three
attributes first and foremost: it must be Ethical, Reliable, and
Beautiful. We define ethical software as software that puts the user
first by adhering to the following seven attributes:

1. It only does what it says it does.

It protects the user’s privacy.

3. It does not use the hardware or software to monitor the
environment of the user in aggregate or individually.

4. It does not fingerprint their software ID without their consent
(individual identifying information does not leave the device
without explicit consent).

5. It doesn’t use their data for profit without their consent in
aggregate or individually.

6. It does not consume their computational resources without
need or consent.

7. It consumes computational and energy resources in an energy-
efficient and sustainable way.

N

By being reliable, it embodies the following four attributes: a) it
performs well under poor conditions, b) adapts to demands in the
user environment, c¢) protects the user from accidents and errors,
and d) fails safely with the rights and benefits of the user first and
foremost.

By being beautiful, it has the following five attributes: a) it
embodies all users in its operations, actions, and diversity, b) it is
pleasing to look at and interact with, c) is aware of user likes,
dislikes, preferences, and culture without biases or prejudices, d) it
evolves and adapts as the users do, and e) it is easy to maintain and
is beautiful to look at and work with its architecture, design, and
code implementation. Our definition of beautiful goes beyond Ul
and human centered design to include the underlying code,
architecture, and logical and physical aspects of the software.

2.2 Engineering Software as a Service (ESaaS):

The second dimension introduces the concept of engineering
“software as a service”, as the most effective and modern approach
for many software applications. Here, the student is introduced to
four pillars that support this approach:

1. Software as a Service (SaaS) is a modern approach to
delivering software on demand through a web browser, a
native desktop application, a mobile app, a dedicated device,
or a software-intensive product.

42

2. Micro-services are fundamental to most SaaS applications,
and they form the basis for adaptable, efficient, and reliable
applications.

3. Creating a complex adaptive software system requires having
a clear understanding of the system’s purpose, usage, and
evolution.

4. Low-fidelity and high-fidelity prototypes can aid in creating
highly useable, efficient, and successful applications. We will
cover this in more detail in dimension five.

To realize the benefits of engineering software as a service, the
following principles must be applied:

1. Minimizing Complexity: Building and writing simple and
readable code.

2. Anticipating Change: Building extensible software, that
allows enhancements, change, and evolution to a software
product without disrupting the underlying structure.

3. Constructing for Verification: Building software in a way that
faults, errors, and gaps can be readily found by not only the
authors of the code but also a variety of users with varying
backgrounds and skill levels including test engineers, QA
engineers, and end users.

4. Constructing for Reuse: Building software by creating
reusable software assets including software libraries, modules,
and components going beyond the boundaries of a single
project, product, product family, team, organizational unit, or
organization.

5. Constructing with Reuse: Building software with the reuse of
existing software assets from libraries provided by the
programming language, development platform, organizational
software library repository, external COTS components, or
Open-Source libraries.

2.3 Software Architecture and D-design:

The third dimension is concerned with teaching students the
principles and methods for creating sound architectures. In this
dimension, we ask students to employ principles and best practices
from the IEEE SWEBOK in seven areas including 1) software
design activities, 2) software design types, 3) software design
principles, 4) key crosscutting issues, 5) software architecture
views, 6) general Ul design principles, and 7) software design
strategies and methods.

The software architecture and design activities fall into three main
categories: decomposition and componentization, the definition of
component interfaces, and component level details definition to
enable implementation and construction. The software design types
follow a similar approach having D-design concerned with
mapping software into components, FP-design identifying common
aspects of the software to enable a family of software products, and
I-design mapping users’ needs to software features and functions.

The design activities and types form the basis for introducing the
seven software design principles of abstraction, coupling and
cohesion, decomposition and modularization,
encapsulation/information hiding, separation of interface and
implementation, sufficiency, completeness, and primitiveness, and



separation of concerns. Once the design principles are covered, key
crosscutting issues are introduced to ensure students can apply
lessons learned from the seven design principles during detailed
design activities and software construction. The issues include
concurrency, control and handling of events, data persistence,
distribution of components, errors and exception handling and fault
tolerance, interaction and presentation, and security.

To communicate and visualize the software architecture, multiple
architectural views are introduced including logical views
satisfying the functional requirements, process views showing
concurrency issues, physical views showing distribution issues, and
development views showing how the design is broken down into
implementation components and units with explicit dependencies
representation.

UI design is an important aspect of the software architecture and
design. To have an effective Ul design, the student is introduced to
the seven general Ul design principles including learnability, user
familiarity, consistency, minimal surprise, recoverability, user
guidance, and user diversity.

Then all aspects of the architecture and design are brought together
by learning strategies and methods that enable sound and effective
outcomes. This includes general, common, and crosscutting design
strategies and methods. We introduce general strategies of divide-
and-conquer, stepwise refinement, top-down and bottom-up,
strategies that use heuristics, patterns and pattern languages, and
iterative and incremental approaches. In addition, common
strategies of function-oriented or structured design, object-oriented
design, data structure-centered design, and component-based
design. The cross-cutting strategies introduced include aspect-
oriented design and service-oriented architecture.

2.4 Software Design and the 6S:

In the fourth dimension, we challenge the students to think deeply
about design models as communication vehicles that model the
essentials, provide perspectives, and enable clear and effective
communication. Here, we draw lessons from IEEE SWEBOK. We
then introduce modelling properties that are present in all effective
models, the set of conditions that must be met for a good design
model, and the types of models. The modeling properties
introduced are completeness, consistency, and correctness
measuring the model degree of requirements implemented, lack of
contradictions in statements, constraints, and functions, and the
degrees of defects present. In addition, the conditions that must be
met prior, after, persist before and after the execution of the
function: are preconditions, postconditions, and invariants. Once
the design fundamentals are covered, we introduced three types of
design models including informational, behavioral, and structural
models each with its focus. While the first focuses on data
representation with data properties, attributes, relationships,
constraints, and sets, the second focuses on functions and features
and how they behave to form a state machine, and control logic
flow, and data flow. The third type focuses on the physical and

43

logical composition into components and components parts with
classes, objects, components, and packages.

This forms the basis to introduce the 6S Checklist with emphasis
on best practice design principles including Site, SOLID, SOFA,
Smells, Style, and Sign-off. These practices blend proven
principles, automated tools, code metrics, and style consistency
with peer code review to enable higher-quality design and code
implementation. Site for example can be argued to be the most
important item on this list when paired with Sign-off. Oftentimes,
components, modules or functions are misplaced or miscategorized
which creates a chain of undesirable poor qualities in the software
design and therefore ultimately in its implementation. Peer code
review and sign-off lead to higher quality design and better code
and can identify misclassification and de-categorization early on.
The SOLID and SOFA principles augment and complement each
other.

SOLID and SOFA are object-oriented class and method design
principles that describe best practices of good class and method
design. SOLID includes five principles: Single Responsibility
Principle, Open/Closed Principle, Liskov Substitution Principle,
Dependency Injection Principle, and Demeter Principle. SOFA
includes four principles: Short, do One thing, with Few arguments,
and with a single Abstraction level. Code metrics and smell
detectors can find violations of SOLID and SOFA. Design smells
detect violations of SOLID principles while code smells detect
violations of SOFA principles.

2.5 Rapid and Multi-Modal Prototyping:

The fifth dimension is rapid multi-modal prototyping. Here, we
introduce the students to three levels of prototypes including low-
fidelity, high-fidelity, and code-based prototypes. With low-fidelity
prototyping, we aim to quickly map high-level design concepts into
tangible artifacts. This can be accomplished with a paper prototype
or clickable wireframes. High-fidelity prototypes are used when
requirements are well understood, and the product prototype can be
tested with actual users. At least three items are critical in a high-
fidelity prototype including a visual design that has detailed Ul
elements and a look and feel similar to that of the end product, real-
life content, and high interactivity. The last type of prototyping uses
code-based tools to produce a high-fidelity prototype in the final
product development environment. Typically, this type of
prototype is identical in look and feel to the final product, uses the
same tools and UI elements, and allows users to fully test the
product features and functions. Students are challenged to find
ways to use low and high-fidelity prototypes to rapidly iterate and
evolve their proposed solutions and to meet the requirements of
their project sponsor. In some cases, the code-based prototype is
also explored while acknowledging its limitations and drawbacks.

2.6 Incremental, Iterative, Real-world Project:

The sixth dimension is to challenge the students to create a solution
to a real-world problem, issue, question, or gap with an active
sponsor as an option. The term project has ten high-level
requirements, must be completed in one semester, and must be done



incrementally and iteratively using five checkpoints. The project
domain may include but is not limited to applications in healthcare,
education, non-profit social work, personal fitness, and children’s
games for education and learning. In the first semester that this
course was offered during the COVID-19 pandemic, one
interesting project was a national vaccine registry (NVR) that
enables users, healthcare providers, healthcare facilities, and local
and national governments to access, share, and manage vaccine
data with patient privacy and transparency offering ease of use,
patient education, and actionable insights for individuals,
healthcare providers, administrators, and policymakers to make
informed decisions.

The project’s high-level requirements include the following ten

items:

1.  Solves a real-world problem, issue, question, or gap.

2. In partnership with a university department, a community
group, a local company, or a regional partner.

3. Engineered as software as a service using SaaS architecture.

Must be accessible through a public URL.

5. Designed, implemented, tested, and deployed through
iterative, prototyping, and incremental processes.

6. Requirements, design documents, and all code artifacts are
accessible through a source control system.

7. Team collaboration is done in Atlassian Jira or a similar SCM
tool to produce incremental releases.

8. Accessible through a web browser and at least one other
modality including an iPhone or Android mobile app, native
Windows OS, Mac OS, or Unix/Linux OS desktop
application, a tailor-made device, or an [oT device.

9. Uses two or more database engine types in its implementation,

for example, relational DBMS and Document Store; relational

DBMS and Key-Value Store; or relational DBMS and Graph

DBMS.

The implementation uses two or more programming

languages. For example, JavaScript and Java; JavaScript and

Python; HTML/CSS, JavaScript, and Ruby; JavaScript,

Objective C, and Scala; or JavaScript and Rust or Go.

»

10.

The five project checkpoints are:

o  Checkpoint 1A: High-level requirements and low-fidelity
prototype.

o  Checkpoint 1B: High-level design and high-fidelity prototype.

o  Checkpoint 2: Alpha functionality and quality with known
issues and defects, detailed components design, and a list of
functions available. Examples from the NVR project included
the following features: User sign/up and registration,
geolocation, OCR, text extraction, sharing and content
security, and SMS push notifications.

e  Checkpoint 3: Beta functionality with stable features, detailed
components design, and a list of features available. Examples
from the NVR project include OCR and text extraction
iteration #2 (I2), image storage, machine learning and
attributes categorization, sharing and content security (12), and
SMS push notifications (I12).

e Final Submission: RC functionality with near ready-for-
production use, detailed components design, and a list of
features available. Examples from the NVR project included
machine learning and attribute categorization (I2),

44

visualization, image storage (I12), sharing (I3), and SMS push
notifications (I3).

Experiences and Lessons Learned

This course is part of a master’s program in software engineering
tailored for students who are looking to enter the field as software
engineering practitioners with five pathways: software architecture,
data engineering, software engineering management, software
engineering education, and software engineering consulting. The
first three pathways are primary and the last two are secondary. The
program is structured as a master’s in professional studies (MPS)
and not a traditional master’s degree (MS). It requires 30 credits, 6
core courses, 4 electives, and culminates in a capstone project with
an internal or external sponsor. Students have the option to take
electives from software engineering, computer science, data
science, human centered computing, and information systems. The
program was soft launched in Spring 2022 and is now in its 5th
semester with enrollment of 80 students. The student population is
a blend of traditional students, professional software engineers
seeking an advanced degree, and career changers from related
fields. The enrollment in this course has been averaging 70%
traditional and 30% non-traditional students.

The course had a positive impact on a diverse group of students
based on students’ feedback and evaluation. One significant lesson
learned revolves around the course's emphasis on a holistic
approach to software development, intertwining ethical
considerations, reliability, and aesthetics. This resonated strongly
with Student Type 1, a traditional computer science graduate, who
found it eye-opening and appreciated the course's real-world
relevance. Student Type 2, a career changer with limited
experience, praised the course for its hands-on and incremental
problem-solving approach, reflecting the second crucial lesson
learned: the development of practical, real-world problem-solving
skills. Lastly, the third lesson learned underscores the course's
focus that building reliable systems not only enhances technical
skills but also establishes the foundation for earning users' trust, a
realization that impacted both traditional graduates and those with
field experience. Collectively, these lessons highlight the course's
effectiveness in providing a comprehensive understanding of
software engineering principles and practices, bridging theory with
practical application for students with varying backgrounds and
career stages.

We also learned that finding a sponsor for the term project is a
multi-fold multiplier to the project’s effectiveness and success.
Although it might be difficult for some students to find the right
sponsor, once they are on board and engaged, their positive impact
on the project is felt almost immediately. Another lesson is the need
to both update the content and tailor it to the students on a semester-
by-semester basis. The updates and the tailoring levels varied from
minimal to moderate. We found that the students are much more
engaged and excited about the course when the content is up-to-
date and feels very relevant. This is an area that we need to tune
further to find the right point where the effort level is reasonable
with the right impact level.



Conclusion

The results from the past three semesters have been very positive.
Average enrollment was 18 students per semester. Students’
feedback reflected an overwhelmingly positive outcome with an
average course evaluation of 4.4/5.0 and a learning overall
evaluation of 4.6/5.0. Students written response also showed a high
level of satisfaction. Students at different stages in learning and
experience mentioned that they benefited greatly from the course
specifically in the course emphasis on a) realignment of software
engineering education goals towards creating ethical, reliable, and
beautiful software applications, software systems, and software-
intensive products, b) the focus on clean, sound, and efficient micro
and macro architectures, and c) blending in the right levels of
teachings from the IEEE SWEBOK, modern microservices
architectures, and emerging approaches from the field of software
engineering research and mainstream open source software.

We envision that the course design will evolve more as we enter
into a new period where Al tools and applications are used in
meaningful ways in software engineering education both at the
entry and advanced levels. We plan to collect additional data that
would be helpful to publish a follow-on paper next year. Our plan
for the next academic year is to tune the course in the following
areas: a) Topical coverage and project scope diversity, b) Higher
levels of engineering software with reuse and for reuse, c)
Designing software-intensive products, d) Special considerations
for designing with Al models, e¢) Designing for diverse users, and
f) Designing for sustainability.

Acknowledgements

The authors are grateful for the support of the College of
Engineering and IT, the Information Systems Department, and the
Software Engineering Graduate Program. Authors Inuganti and
Goyal are graduate students and TAs/RAs in the software
engineering department and have taken this course. Author Dr.
Samarah is the corresponding author. He envisioned and developed
the course and taught it for the past 2 years. All authors contributed
to the design and layout of the paper, the writing of the text, and the
collection of relevant background and data. First two author names
are ordered alphabetically.

References

[1] Valipour, M. H., AmirZafari, B., Maleki, K. N., &
Daneshpour, N. (2009, August). A brief survey of software
architecture concepts and service oriented architecture. In 2009
2nd IEEE International Conference on Computer Science and
Information Technology (pp. 34-38). IEEE.

[2] Madasu, V. K., Venna, T. V. S. N., Eltacib, T., Moalla, M. A.,
Almuslet, N. A., & Badaoui, A. (2015). Solid principles in
software architecture and introduction to RESM concept in OOP,
2.3159-40.

[3] Garlan, D., & Perry, D. E. (1995). Introduction to the special
issue on software architecture. IEEE Trans. Software Eng., 21(4),
269-274.

45

[4] Dobrica, L., & Niemela, E. (2002). A survey on software
architecture analysis methods. IEEE Transactions on Software
Engineering, 28(7), 638-653.

[5] Ouhbi, S., & Pombo, N. (2020, April). Software engineering
education: Challenges and perspectives. In 2020 IEEE Global
Engineering Education Conference (EDUCON) (pp. 202-209).
IEEE.

[6] Bass, M. (2016, April). Software Engineering Education in the
New World: What Needs to Change? In 2016 IEEE 29th
International Conference on Software Engineering Education and
Training (CSEET) (pp. 213-221). IEEE.

[7] Gupta, C., & Gupta, V. (2023). C4 Skills in the Engineering
Graduate: A Study to Align Software Engineering Education With
Market-Driven Software Industry Needs. IEEE Transactions on
Education

[8] Stettina, C. J., Zhou, Z., Bick, T., & Katzy, B. (2013, May).
Academic education of software engineering practices: towards
planning and improving capstone courses based upon intensive
coaching and team routines. In 2013 26th International
Conference on Software Engineering Education and Training
(CSEE&T) (pp. 169-178). IEEE

[9] Garousi, V., Giray, G., Tuzun, E., Catal, C., & Felderer, M.
(2019). Closing the gap between software engineering education
and industrial needs. IEEE software, 37(2), 68-77.

[10] Mclnerney, P., & Sobiesiak, R. (2000). The UI design
process. ACM SIGCHI Bulletin, 32(1), 17-21.

[11] Ozkaya, I. (2019). Ethics is a software design concern. IEEE
Software, 36(3), 4-8.

[12] Calluzzo, V. J., & Cante, C. J. (2004). Ethics in information
technology and software use. Journal of Business Ethics, 51, 301-
312.

[13] Bourque, P., Dupuis, R., Abran, A., Moore, J. W., & Tripp,
L. (1999). The guide to the software engineering body of
knowledge. IEEE Software, 16(6), 35-44.

[14] Bourque, P., & Fairley, R. E. (2014). SWEBOK v3. 0: Guide
to the software engineering body of knowledge. IEEE Computer
Society, 1-335.

[15] Fox, A., & Patterson, D. (2021). Engineering Software as a
Service: An Agile Approach Using Cloud Computing (2nd ed.,
2.0b7).



