
Software Engineering Education: Towards Ethical, Reliable, and Beautiful Software

Aikya Inuganti
 University of Maryland Baltimore 

County  
  ainugan1@umbc.edu 

Madhuri Goyal
 University of Maryland Baltimore 

County  
 mgoyal1@umbc.edu  

Mohammad Samarah†

  University of Maryland Baltimore 
County 

 msamarah@umbc.edu

ABSTRACT 
In this paper, we present our experience with an innovative 
pedagogical approach to software engineering in a graduate-level 
advanced software engineering course. Our approach to software 
engineering and software design education relies on six 
dimensions: 1) restating the goal of software engineering education 
to say that software must be conceived of, architected, designed, 
developed, deployed, maintained, and managed to be ethical, 
reliable, and beautiful; 2) software should be engineered as a 
service; 3) apply proven architectural principles; 4) use sound 
design principles; 5) create rapid multi-modal prototyping; and 6) 
bring the course learning objectives together by creating a term-
long project that creates a solution to a real-world problem using an 
iterative process. The results from students’ feedback have been 
very positive with students citing the benefits of the course 
particularly a) the realignment of software engineering education 
goals centered on creating ethical, reliable, and beautiful software, 
b) the focus on clean, sound, and efficient architectures, and c)
blending of IEEE SWEBOK, modern microservice architectures,
and emerging approaches from software engineering research and
open source. We plan to continue developing the course and
enhance it in the areas of software reuse, software product design,
AI and software design, design for diverse users, and design for
sustainability.

CCS CONCEPTS 

 •Software and its engineering~Software creation and 
management~Software development process 
management~Software development methods •Software and 
its engineering~Software organization and properties~Extra-
functional properties~Software reliability •Software and its 
engineering~Software creation and management~Designing 
software~Software design engineering •Social and professional 
topics~Professional topics~Computing education~Computing 
education programs~Software engineering education •Applied 
computing~Education~Collaborative learning •Software and its 
engineering~Software creation and management~Software 
development techniques~Software prototyping •Software and its 
engineering~Software creation and management~Collaboration 
in software development~Programming  

KEYWORDS 
Software Engineering Education, Software Engineering Graduate 
Programs, Software Design, Software Ethics. 

Background 
The course development was influenced by related works in 
software engineering education research and previous experiences 
in industry developing both commercial and bespoke products: 
including productivity applications, imaging, embedded software 
for consumer electronics, and high-speed software subsystems for 
storage appliances. In this section, we describe some of the related 
works.  

In "A Brief Survey of Software Architecture Concepts and Service-
Oriented Architecture," (Valipour et al., 2009) the authors explore 
software architecture complexities and introduce service-oriented 
architecture (SOA) as an effective framework for web software 
development. SOA was a major driver of improved software 
applications in the past two decades and the lessons learned from 
SOA is the foundation for software as a service and a cornerstone 
of the design of our course. 
In "SOLID Principles in Software Architecture and Introduction to 
RESM Concept in OOP" (Madasu et al., 2015), the authors describe 
how design principles affect key aspects such as reusability, 
extensibility, simplicity, and maintainability, particularly in 
Object-Oriented Programming (OOP). The integration of these 
design principles builds a crucial bridge between theory and real-
world applications. SOLID is adopted into the educational 
approach of this course while combining it with other design 
principles. 

In "Introduction to the Special Issue on Software 
Architecture,"(Garlan & Perry, 1995) the authors provide a 
comprehensive view of software architecture with a 25-year 
perspective that is still relevant today. The paper provides a 
historical context of software architectures and a foundational 
viewpoint. Additionally in the paper "A Survey on Software 
Architecture Analysis Methods" (Dobrica & Niemela, 2002) the 
authors introduce evaluation techniques that are still relevant. It is 
important as students learn new design approaches to have a solid 
grounding of the historical context of related and differing 
approaches. The takeaway of these two papers into our approach is 
that historical context should influence and guide future design 
approaches. Addressing challenges in education, "Software 
Engineering Education: Challenges and Perspectives" (Ouhbi & 
Pombo, 2020) and "Software Engineering Education in the New 
World: What Needs to Change?" (Bass, 2016) advocate for 
innovative teaching methodologies. Our approach is similar in that 

 
Designing '24, April 15–14, 2024, Lisbon, Portugal 
© 2024 Copyright is held by the owner/author(s). 
ACM ISBN 979-8-4007-0563-2/24/04. 
https://doi.org/10.1145/3643660.3643950

This work licensed under Creative Commons Attribution International 4.0 License.

40

2024 IEEE/ACM International Workshop on Designing Software (Designing)



 
  

 

 
 

we were not satisfied with traditional software engineering course 
design and sought to improve it by using new methods. These 
works highlight the challenges in software engineering education 
and advocate for innovative teaching methodologies while 
considering industry practices. "C4 Skills in the Engineering 
Graduate" (Gupta & Gupta, 2023) adds a market-driven 
perspective, emphasizing design-based learning and skills 
alignment. This is a fundamental aspect of our course design that it 
needs to be focused on the design and building of software 
applications and software intensive products. "Ethics Is a Software 
Design Concern," (Ozkaya, 2019) brings a critical dimension to our 
approach by highlighting ethics as a fundamental design constraint. 
This paper predates the global pandemic and the recent introduction 
of AI tools to the public. Ethical considerations are even more 
critical now as we see AI tools being used throughout the software 
engineering process. "The UI Design Process," (McInerney & 
Sobiesiak, 2000) acknowledge the prevalent challenges in UI 
design, emphasizing the need for structured processes, effective 
communication, and collaboration. In our approach, we identified 
beauty is one of the three critical aspects of software both in 
external appearance and internal workings. 

Expanding on the insights provided by the previously mentioned 
papers, in the "Academic Education of Software Engineering 
Practices" (Stettina et al., 2013) bring a valuable perspective on the 
delicate balance between hands-on activities and academic 
reflection in teaching software engineering. Our approach places 
great emphasis on practical learning and fostering a dynamic 
educational environment. The paper's emphasis on intensive 
coaching and agile practices is part of our approach in providing a 
comprehensive and effective educational experience. 

"Closing the Gap Between Software Engineering Education and 
Industrial Needs" (Garousi et al., 2020) significantly addresses the 
real-world challenges faced by students entering the software 
industry. Our approach provides educators and practitioners 
educational curricula that stays ahead of industry by adapting 
educational approaches to meet the evolving needs of the software 
sector and a new category of software intensive products. 

Exploring the ethical dimensions, "Ethics in Information 
Technology and Software Use" (Calluzzo & Cante, 2004) reaffirm 
our consideration of ethics as a fundamental design constraint in 
software engineering. We applied findings from the paper's review 
of students' attitudes and perceptions regarding ethical behaviors 
into our approach ensuring that our educational framework not only 
imparts technical knowledge but also instils a strong ethical 
foundation. 

Taking lessons learned from SOA, SOLID principles, previous and 
current software design and architectures, ethics as a design 
constraint, and UI design, we applied these lessons in the context 
of software engineering education challenges, identifying critical 
attributes needed in software products today while considering the 
special needs of the software engineering practice and the 
constantly changing demands of the industry. 

1 Introduction 
In this paper, we describe an innovative pedagogical approach for 
an advanced software engineering course. Our approach consists of 
several dimensions and for each one we employ one or more proven 

software engineering methods. There are six dimensions: 1) 
restating the overarching goals of software applications and 
systems, 2) employing engineering software as a service, 3) using 
multiple prototyping modalities, 4) applying proven architecture 
principles, 5) implementing best practice design principles, and 6) 
building a term-long project. 

The course blends content from a recent textbook on engineering 
software as a service using the Ruby programming language and 
the Ruby on Rails framework (Fox & Patterson, 2021), the IEEE 
Software Engineering Body of Knowledge v3 (Bourque et al., 
1999), and relevant content from emerging software engineering 
research, open source, and commercial software. Topical coverage 
varies from topic to topic, some material is review of foundational 
topics, some is to establish background and context, and some is 
given deep coverage.  

The first dimension is to restate the goals of software engineering 
and software design by emphasizing three attributes. We recognize 
that there are many desirable attributes and state that the most 
important ones are ethical, reliable, and beautiful. Therefore, 
software must be conceived of, architected, designed, developed, 
deployed, maintained, and managed to be ethical, reliable, and 
beautiful. This is more critical now given the rise of software-
intensive products where software is the main component or the 
main product differentiation. Ethical means that all architectural, 
design, and construction decisions are made with the user’s privacy 
and rights as a priority and that the software is for the service of the 
user first and foremost. And it uses the available computing 
resources responsibly. Reliable means that the software is safe to 
use, and protects the user from accidental mistakes, errors, and 
failures. It also means that it works with constraints in the user 
environment and fails safely. Beautiful means that the software is 
easy to use, pleasing to look at, easy to maintain, and embodies 
users’ diversity in a meaningful way. Beauty in this context is not 
about style or color but rather a reflection of the beauty and 
diversity of its users among itself. 

The second dimension is to engineer software as a service by 
creating independent, micro, and highly efficient services that can 
be combined together to create higher-level functionality. Thus, 
significantly increasing engineering software with reuse and for 
reuse creating cohesive, independent, and efficient software 
components and libraries. 

The third, fourth, and fifth dimensions apply proven architectural 
and sound design principles and rapid multi-modal prototyping to 
engineer software that achieves desired results. Prototyping is 
achieved with low-fidelity, high-fidelity, and code-based 
prototypes. The chief architectural principles are reuse, cohesion, 
decoupling, and aspects among others. The chief design modelling 
properties introduced are completeness, consistency, and 
correctness along with the 6S checklist based on SOLID and SOFA 
principles. The sixth dimension is to create a solution to a real-
world problem, issue, question, or gap using an incremental and 
iterative approach using five checkpoints. In the following section, 
we describe the dimensions in more detail. 

41



 
  

 

 

2 Reimagining Software Engineering Education 

2.1 Towards Ethical, Reliable, and Beautiful 
Software:  
In the first dimension, students are challenged to rethink and 
reimagine the most important attributes of software, software 
applications, and software-intensive products.  Acknowledging that 
traditional approaches have served us well in the past but need to 
be reevaluated given the rise of software-intensive products and the 
complexity of today’s software. The student is introduced to the 
concept that software must be conceived of, architected, designed, 
implemented, built, deployed, maintained, and managed with three 
attributes first and foremost: it must be Ethical, Reliable, and 
Beautiful. We define ethical software as software that puts the user 
first by adhering to the following seven attributes: 

1. It only does what it says it does. 
2. It protects the user’s privacy. 
3. It does not use the hardware or software to monitor the 

environment of the user in aggregate or individually. 
4. It does not fingerprint their software ID without their consent 

(individual identifying information does not leave the device 
without explicit consent). 

5. It doesn’t use their data for profit without their consent in 
aggregate or individually. 

6. It does not consume their computational resources without 
need or consent. 

7. It consumes computational and energy resources in an energy-
efficient and sustainable way. 

 
By being reliable, it embodies the following four attributes: a) it 
performs well under poor conditions, b) adapts to demands in the 
user environment, c) protects the user from accidents and errors, 
and d) fails safely with the rights and benefits of the user first and 
foremost.  

By being beautiful, it has the following five attributes: a) it 
embodies all users in its operations, actions, and diversity, b) it is 
pleasing to look at and interact with, c) is aware of user likes, 
dislikes, preferences, and culture without biases or prejudices, d) it 
evolves and adapts as the users do, and e) it is easy to maintain and 
is beautiful to look at and work with its architecture, design, and 
code implementation. Our definition of beautiful goes beyond UI 
and human centered design to include the underlying code, 
architecture, and logical and physical aspects of the software. 

2.2 Engineering Software as a Service (ESaaS):  
The second dimension introduces the concept of engineering 
“software as a service”, as the most effective and modern approach 
for many software applications. Here, the student is introduced to 
four pillars that support this approach: 

1. Software as a Service (SaaS) is a modern approach to 
delivering software on demand through a web browser, a 
native desktop application, a mobile app, a dedicated device, 
or a software-intensive product.  

2. Micro-services are fundamental to most SaaS applications, 
and they form the basis for adaptable, efficient, and reliable 
applications. 

3. Creating a complex adaptive software system requires having 
a clear understanding of the system’s purpose, usage, and 
evolution. 

4. Low-fidelity and high-fidelity prototypes can aid in creating 
highly useable, efficient, and successful applications. We will 
cover this in more detail in dimension five. 

To realize the benefits of engineering software as a service, the 
following principles must be applied: 

1. Minimizing Complexity: Building and writing simple and 
readable code. 

2. Anticipating Change: Building extensible software, that 
allows enhancements, change, and evolution to a software 
product without disrupting the underlying structure. 

3. Constructing for Verification: Building software in a way that 
faults, errors, and gaps can be readily found by not only the 
authors of the code but also a variety of users with varying 
backgrounds and skill levels including test engineers, QA 
engineers, and end users. 

4. Constructing for Reuse: Building software by creating 
reusable software assets including software libraries, modules, 
and components going beyond the boundaries of a single 
project, product, product family, team, organizational unit, or 
organization. 

5. Constructing with Reuse: Building software with the reuse of 
existing software assets from libraries provided by the 
programming language, development platform, organizational 
software library repository, external COTS components, or 
Open-Source libraries. 

2.3 Software Architecture and D-design:  
The third dimension is concerned with teaching students the 
principles and methods for creating sound architectures. In this 
dimension, we ask students to employ principles and best practices 
from the IEEE SWEBOK in seven areas including 1) software 
design activities, 2) software design types, 3) software design 
principles, 4) key crosscutting issues, 5) software architecture 
views, 6) general UI design principles, and 7) software design 
strategies and methods.  

The software architecture and design activities fall into three main 
categories: decomposition and componentization, the definition of 
component interfaces, and component level details definition to 
enable implementation and construction. The software design types 
follow a similar approach having D-design concerned with 
mapping software into components, FP-design identifying common 
aspects of the software to enable a family of software products, and 
I-design mapping users’ needs to software features and functions.  

The design activities and types form the basis for introducing the 
seven software design principles of abstraction, coupling and 
cohesion, decomposition and modularization, 
encapsulation/information hiding, separation of interface and 
implementation, sufficiency, completeness, and primitiveness, and 

42



 
  

 

 
 

separation of concerns. Once the design principles are covered, key 
crosscutting issues are introduced to ensure students can apply 
lessons learned from the seven design principles during detailed 
design activities and software construction. The issues include 
concurrency, control and handling of events, data persistence, 
distribution of components, errors and exception handling and fault 
tolerance, interaction and presentation, and security.  

To communicate and visualize the software architecture, multiple 
architectural views are introduced including logical views 
satisfying the functional requirements, process views showing 
concurrency issues, physical views showing distribution issues, and 
development views showing how the design is broken down into 
implementation components and units with explicit dependencies 
representation. 

UI design is an important aspect of the software architecture and 
design. To have an effective UI design, the student is introduced to 
the seven general UI design principles including learnability, user 
familiarity, consistency, minimal surprise, recoverability, user 
guidance, and user diversity.  

Then all aspects of the architecture and design are brought together 
by learning strategies and methods that enable sound and effective 
outcomes. This includes general, common, and crosscutting design 
strategies and methods. We introduce general strategies of divide-
and-conquer, stepwise refinement, top-down and bottom-up, 
strategies that use heuristics, patterns and pattern languages, and 
iterative and incremental approaches. In addition, common 
strategies of function-oriented or structured design, object-oriented 
design, data structure-centered design, and component-based 
design. The cross-cutting strategies introduced include aspect-
oriented design and service-oriented architecture. 

2.4 Software Design and the 6S:  
In the fourth dimension, we challenge the students to think deeply 
about design models as communication vehicles that model the 
essentials, provide perspectives, and enable clear and effective 
communication. Here, we draw lessons from IEEE SWEBOK. We 
then introduce modelling properties that are present in all effective 
models, the set of conditions that must be met for a good design 
model, and the types of models. The modeling properties 
introduced are completeness, consistency, and correctness 
measuring the model degree of requirements implemented, lack of 
contradictions in statements, constraints, and functions, and the 
degrees of defects present. In addition, the conditions that must be 
met prior, after, persist before and after the execution of the 
function: are preconditions, postconditions, and invariants. Once 
the design fundamentals are covered, we introduced three types of 
design models including informational, behavioral, and structural 
models each with its focus. While the first focuses on data 
representation with data properties, attributes, relationships, 
constraints, and sets, the second focuses on functions and features 
and how they behave to form a state machine, and control logic 
flow, and data flow. The third type focuses on the physical and 

logical composition into components and components parts with 
classes, objects, components, and packages. 
This forms the basis to introduce the 6S Checklist with emphasis 
on best practice design principles including Site, SOLID, SOFA, 
Smells, Style, and Sign-off. These practices blend proven 
principles, automated tools, code metrics, and style consistency 
with peer code review to enable higher-quality design and code 
implementation. Site for example can be argued to be the most 
important item on this list when paired with Sign-off. Oftentimes, 
components, modules or functions are misplaced or miscategorized 
which creates a chain of undesirable poor qualities in the software 
design and therefore ultimately in its implementation. Peer code 
review and sign-off lead to higher quality design and better code 
and can identify misclassification and de-categorization early on. 
The SOLID and SOFA principles augment and complement each 
other. 

SOLID and SOFA are object-oriented class and method design 
principles that describe best practices of good class and method 
design. SOLID includes five principles: Single Responsibility 
Principle, Open/Closed Principle, Liskov Substitution Principle, 
Dependency Injection Principle, and Demeter Principle. SOFA 
includes four principles: Short, do One thing, with Few arguments, 
and with a single Abstraction level. Code metrics and smell 
detectors can find violations of SOLID and SOFA. Design smells 
detect violations of SOLID principles while code smells detect 
violations of SOFA principles. 

2.5 Rapid and Multi-Modal Prototyping:  
The fifth dimension is rapid multi-modal prototyping. Here, we 
introduce the students to three levels of prototypes including low-
fidelity, high-fidelity, and code-based prototypes. With low-fidelity 
prototyping, we aim to quickly map high-level design concepts into 
tangible artifacts. This can be accomplished with a paper prototype 
or clickable wireframes. High-fidelity prototypes are used when 
requirements are well understood, and the product prototype can be 
tested with actual users. At least three items are critical in a high-
fidelity prototype including a visual design that has detailed UI 
elements and a look and feel similar to that of the end product, real-
life content, and high interactivity. The last type of prototyping uses 
code-based tools to produce a high-fidelity prototype in the final 
product development environment. Typically, this type of 
prototype is identical in look and feel to the final product, uses the 
same tools and UI elements, and allows users to fully test the 
product features and functions. Students are challenged to find 
ways to use low and high-fidelity prototypes to rapidly iterate and 
evolve their proposed solutions and to meet the requirements of 
their project sponsor. In some cases, the code-based prototype is 
also explored while acknowledging its limitations and drawbacks. 
 
2.6 Incremental, Iterative, Real-world Project:  
The sixth dimension is to challenge the students to create a solution 
to a real-world problem, issue, question, or gap with an active 
sponsor as an option. The term project has ten high-level 
requirements, must be completed in one semester, and must be done 

43



 
  

 

 

incrementally and iteratively using five checkpoints. The project 
domain may include but is not limited to applications in healthcare, 
education, non-profit social work, personal fitness, and children’s 
games for education and learning. In the first semester that this 
course was offered during the COVID-19 pandemic, one 
interesting project was a national vaccine registry (NVR) that 
enables users, healthcare providers, healthcare facilities, and local 
and national governments to access, share, and manage vaccine 
data with patient privacy and transparency offering ease of use, 
patient education, and actionable insights for individuals, 
healthcare providers, administrators, and policymakers to make 
informed decisions. 
The project’s high-level requirements include the following ten 
items: 
1. Solves a real-world problem, issue, question, or gap. 
2. In partnership with a university department, a community 

group, a local company, or a regional partner. 
3. Engineered as software as a service using SaaS architecture. 
4. Must be accessible through a public URL. 
5. Designed, implemented, tested, and deployed through 

iterative, prototyping, and incremental processes. 
6. Requirements, design documents, and all code artifacts are 

accessible through a source control system. 
7. Team collaboration is done in Atlassian Jira or a similar SCM 

tool to produce incremental releases. 
8. Accessible through a web browser and at least one other 

modality including an iPhone or Android mobile app, native 
Windows OS, Mac OS, or Unix/Linux OS desktop 
application, a tailor-made device, or an IoT device. 

9. Uses two or more database engine types in its implementation, 
for example, relational DBMS and Document Store; relational 
DBMS and Key-Value Store; or relational DBMS and Graph 
DBMS. 

10. The implementation uses two or more programming 
languages. For example, JavaScript and Java; JavaScript and 
Python; HTML/CSS, JavaScript, and Ruby; JavaScript, 
Objective C, and Scala; or JavaScript and Rust or Go. 

 
The five project checkpoints are: 
● Checkpoint 1A: High-level requirements and low-fidelity 

prototype. 
● Checkpoint 1B: High-level design and high-fidelity prototype. 
● Checkpoint 2: Alpha functionality and quality with known 

issues and defects, detailed components design, and a list of 
functions available. Examples from the NVR project included 
the following features: User sign/up and registration, 
geolocation, OCR, text extraction, sharing and content 
security, and SMS push notifications. 

● Checkpoint 3: Beta functionality with stable features, detailed 
components design, and a list of features available. Examples 
from the NVR project include OCR and text extraction 
iteration #2 (I2), image storage, machine learning and 
attributes categorization, sharing and content security (I2), and 
SMS push notifications (I2). 

● Final Submission: RC functionality with near ready-for-
production use, detailed components design, and a list of 
features available. Examples from the NVR project included 
machine learning and attribute categorization (I2), 

visualization, image storage (I2), sharing (I3), and SMS push 
notifications (I3). 

Experiences and Lessons Learned 

This course is part of a master’s program in software engineering 
tailored for students who are looking to enter the field as software 
engineering practitioners with five pathways: software architecture, 
data engineering, software engineering management, software 
engineering education, and software engineering consulting. The 
first three pathways are primary and the last two are secondary. The 
program is structured as a master’s in professional studies (MPS) 
and not a traditional master’s degree (MS). It requires 30 credits, 6 
core courses, 4 electives, and culminates in a capstone project with 
an internal or external sponsor. Students have the option to take 
electives from software engineering, computer science, data 
science, human centered computing, and information systems. The 
program was soft launched in Spring 2022 and is now in its 5th 
semester with enrollment of 80 students. The student population is 
a blend of traditional students, professional software engineers 
seeking an advanced degree, and career changers from related 
fields. The enrollment in this course has been averaging 70% 
traditional and 30% non-traditional students. 

The course had a positive impact on a diverse group of students 
based on students’ feedback and evaluation. One significant lesson 
learned revolves around the course's emphasis on a holistic 
approach to software development, intertwining ethical 
considerations, reliability, and aesthetics. This resonated strongly 
with Student Type 1, a traditional computer science graduate, who 
found it eye-opening and appreciated the course's real-world 
relevance. Student Type 2, a career changer with limited 
experience, praised the course for its hands-on and incremental 
problem-solving approach, reflecting the second crucial lesson 
learned: the development of practical, real-world problem-solving 
skills. Lastly, the third lesson learned underscores the course's 
focus that building reliable systems not only enhances technical 
skills but also establishes the foundation for earning users' trust, a 
realization that impacted both traditional graduates and those with 
field experience. Collectively, these lessons highlight the course's 
effectiveness in providing a comprehensive understanding of 
software engineering principles and practices, bridging theory with 
practical application for students with varying backgrounds and 
career stages. 

We also learned that finding a sponsor for the term project is a 
multi-fold multiplier to the project’s effectiveness and success. 
Although it might be difficult for some students to find the right 
sponsor, once they are on board and engaged, their positive impact 
on the project is felt almost immediately. Another lesson is the need 
to both update the content and tailor it to the students on a semester-
by-semester basis. The updates and the tailoring levels varied from 
minimal to moderate. We found that the students are much more 
engaged and excited about the course when the content is up-to-
date and feels very relevant. This is an area that we need to tune 
further to find the right point where the effort level is reasonable 
with the right impact level. 

44



 
  

 

 
 

Conclusion 
The results from the past three semesters have been very positive. 
Average enrollment was 18 students per semester. Students’ 
feedback reflected an overwhelmingly positive outcome with an 
average course evaluation of 4.4/5.0 and a learning overall 
evaluation of 4.6/5.0. Students written response also showed a high 
level of satisfaction. Students at different stages in learning and 
experience mentioned that they benefited greatly from the course 
specifically in the course emphasis on a) realignment of software 
engineering education goals towards creating ethical, reliable, and 
beautiful software applications, software systems, and software-
intensive products, b) the focus on clean, sound, and efficient micro 
and macro architectures, and c) blending in the right levels of 
teachings from the IEEE SWEBOK, modern microservices 
architectures, and emerging approaches from the field of software 
engineering research and mainstream open source software. 

 
We envision that the course design will evolve more as we enter 
into a new period where AI tools and applications are used in 
meaningful ways in software engineering education both at the 
entry and advanced levels. We plan to collect additional data that 
would be helpful to publish a follow-on paper next year. Our plan 
for the next academic year is to tune the course in the following 
areas:  a) Topical coverage and project scope diversity, b) Higher 
levels of engineering software with reuse and for reuse, c) 
Designing software-intensive products, d) Special considerations 
for designing with AI models, e) Designing for diverse users, and 
f) Designing for sustainability. 

Acknowledgements 
The authors are grateful for the support of the College of 
Engineering and IT, the Information Systems Department, and the 
Software Engineering Graduate Program. Authors Inuganti and 
Goyal are graduate students and TAs/RAs in the software 
engineering department and have taken this course. Author Dr. 
Samarah is the corresponding author. He envisioned and developed 
the course and taught it for the past 2 years. All authors contributed 
to the design and layout of the paper, the writing of the text, and the 
collection of relevant background and data. First two author names 
are ordered alphabetically. 
References 
[1] Valipour, M. H., AmirZafari, B., Maleki, K. N., & 
Daneshpour, N. (2009, August). A brief survey of software 
architecture concepts and service oriented architecture. In 2009 
2nd IEEE International Conference on Computer Science and 
Information Technology (pp. 34-38). IEEE. 

[2] Madasu, V. K., Venna, T. V. S. N., Eltaeib, T., Moalla, M. A., 
Almuslet, N. A., & Badaoui, A. (2015). Solid principles in 
software architecture and introduction to RESM concept in OOP, 
2. 3159-40.  

[3] Garlan, D., & Perry, D. E. (1995). Introduction to the special 
issue on software architecture. IEEE Trans. Software Eng., 21(4), 
269-274. 

[4] Dobrica, L., & Niemela, E. (2002). A survey on software 
architecture analysis methods. IEEE Transactions on Software 
Engineering, 28(7), 638-653. 

[5] Ouhbi, S., & Pombo, N. (2020, April). Software engineering 
education: Challenges and perspectives. In 2020 IEEE Global 
Engineering Education Conference (EDUCON) (pp. 202-209). 
IEEE. 

[6] Bass, M. (2016, April). Software Engineering Education in the 
New World: What Needs to Change? In 2016 IEEE 29th 
International Conference on Software Engineering Education and 
Training (CSEET) (pp. 213-221). IEEE. 

[7] Gupta, C., & Gupta, V. (2023). C4 Skills in the Engineering 
Graduate: A Study to Align Software Engineering Education With 
Market-Driven Software Industry Needs. IEEE Transactions on 
Education 

[8] Stettina, C. J., Zhou, Z., Bäck, T., & Katzy, B. (2013, May). 
Academic education of software engineering practices: towards 
planning and improving capstone courses based upon intensive 
coaching and team routines. In 2013 26th International 
Conference on Software Engineering Education and Training 
(CSEE&T) (pp. 169-178). IEEE  

[9] Garousi, V., Giray, G., Tuzun, E., Catal, C., & Felderer, M. 
(2019). Closing the gap between software engineering education 
and industrial needs. IEEE software, 37(2), 68-77.  

[10] McInerney, P., & Sobiesiak, R. (2000). The UI design 
process. ACM SIGCHI Bulletin, 32(1), 17-21. 

[11] Ozkaya, I. (2019). Ethics is a software design concern. IEEE 
Software, 36(3), 4-8. 

[12] Calluzzo, V. J., & Cante, C. J. (2004). Ethics in information 
technology and software use. Journal of Business Ethics, 51, 301-
312.  

[13] Bourque, P., Dupuis, R., Abran, A., Moore, J. W., & Tripp, 
L. (1999). The guide to the software engineering body of 
knowledge. IEEE Software, 16(6), 35-44. 

[14] Bourque, P., & Fairley, R. E. (2014). SWEBOK v3. 0: Guide 
to the software engineering body of knowledge. IEEE Computer 
Society, 1-335. 

[15] Fox, A., & Patterson, D. (2021). Engineering Software as a 
Service: An Agile Approach Using Cloud Computing (2nd ed., 
2.0b7). 

 

45


