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Abstract. Formal descriptive techniques provide a means to describe and manage the behaviour and 
structure of complex systems. In the last few years powerful commercial tool support for the formal 
descriptive technique SOL (Specification and Description Language) became available. This allows 
for the practical application of SOL in the software engineering process. A brief overview of the SOL 
language is given. The basic SOL concepts available to describe the structure and behaviour of 
systems are also explained. The typical capabilities of tools are listed and industrial experience with 
SOL is described. A comprehensive list of references identifies the available information on SOL. 
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1. INTRODUCTION 

Modem software systems can be very complex. 
Typical examples are the software that control real 
time systems such as public and private telephone 
exchanges, urban traffic controllers, pay phones, 
assembly line controllers, safety systems on board 
aircraft, and automatic teller machine systems. Apart 
from functional requirements, these systems must 
normally satisfy severe safety, reliability and quality 
of service requirements which increase the 
complexity of the control software. The required 
behaviour of complex systems is difficult to specify, 
model and test. Time to market further requires that 
these systems be developed by large development 
teams which require accurate means of 
communicating concepts and requirements. 

The very first step in engineering the software of a 
new system is the identification of all the 
requirements that the software must satisfy. This is 
typically done in a natural language which often 
results in ambiguous requirements[l ,2]. It is also 
very difficult to determine the completeness and 
consistency of these requirements. From these 
requirements, expressed in a natural language, 
different people develop different conceptual models 
of the problem. This inevitably leads to 
misunderstanding and miscommunication, resulting 
in an inefficient software engineering process. 

The use of a formal description technique (FDT) to 
capture the required behaviour and structure of 
complex systems can assist greatly in solving these 
problems. A formal language with formal semantics 
forces the software engineer to unambiguously 

define each and every concept used to describe the 
required behaviour of the complex parts of a system. 
This results in clear, precise and concise 
specifications [3]. 

Since specifications now have a formal basis, 
requirements can be analysed for completeness, 
correctness and consistency by executing the 
specification in a simulation environment. 
Completeness is verified by testing that the 
specification describes the required behaviour for all 
the possible combinations of external inputs to the 
system. Correctness and consistency is determined 
by exploring the state space for deadlock situations 
and for parts of the specification which are never 
executed. 

Conceptual problems which would normally only 
show up late in the software engineering process 
during detailed design and implementation, can now 
be identified early when the cost of modifications is 
still small. FDTs focus the software engineering 
effort on the early phases of system development to 
ensure that the final implementation will be based on 
sound requirements. 

A FDT has been likened to a mirror, not only 
showing the structural grace and functional 
consistency of a system design, but also its structural 
poverty and functional deficiency [4]. Although it 
may seem tedious at first, FDTs force the designer 
to consider and control all aspects of the complex 
parts of a system. 
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Using a FDT also provides a basis for determining 
conformance of implementations to specifications 
since the required behaviour is now well defined. 

Since a FDT has a formal syntax and semantics, it 
allows for computer based tool support to create, 
maintain, analyse, simulate and implement 
specifications. Commercial tools have matured in 
the last few years and now enable the software 
engineer to practically apply FDTs m the 
development of complex software systems. 

Three FDTs have been standardised by international 
bodies, namely ESTELLE (Extended Finite State 
Machine Language), LOTOS (Language of 
Temporal Ordering Specifications) and SOL 
(Specification and Description Language) [4]. 
ESTELLE and LOTOS were developed within the 
International Organisation for Standardisation (ISO) 
while SOL was developed by the International 
Telegraph and Telephone Consultative Committee 
(CC ITT, now called the International 
Telecommunication Union or ITU). ESTELLE [5] 
and SOL are based on communicating finite state 
machines, while LOTOS is based on process 
algebraic methods [6,7]. After an extensive literature 
and Internet search it was found that SOL currently 
has the best available commercial tool support, 
making it the candidate FDT in a commercial 
software engineering environment. This has 
prompted BSW Data South to start using SOL in the 
software engineering ofreal time systems. 

The purpose of this paper is to provide a very brief 
introduction to SOL and the capabilities of the tools 
that are available. Industrial experience with SOL at 
BSW Data South as well as at other companies 
reported in the literature, are summarised. A 
comprehensive list of references to text books and 
available literature will enable the interested reader 
to gain further knowledge of SOL. An SOL 
Newsletter is published approximately once a year 
under the auspices of the ITU. General information 
on SOL and SOL tools are also available on the 
Internet [8]. 

2. SOL 

SOL is recommended by the ITU for the 
unambiguous specification and description of the 
behaviour of systems. Although SOL originated 
within the telecommunications field, it has a much 
broader application area, covering all concurrent, 
reactive, distributed systems. It is particularly suited 
to real time systems. It allows for a formal definition 
of the behaviour and structure of complex systems 
in a clear and concise way that can be understood, 
communicated and analysed independently from the 
implementation. 

In this respect it differs from the visual language 
proposed by Mostert [9] which also contains 
constructs for physical implementation issues such 
as direct memory access (OMA) and interrupts. SOL 
allows the user to focus on required behaviour and 
structure and to postpone implementation decisions 
until requirements are clearly defined and 
understood. 

The development of SOL started in 1968 when the 
ITU recognised the need for a new language to 
specify and describe the functional features of 
systems [10]. The language started from the well 
known model of finite state machines used by 
telecommunication engineers to design 
electromechanical exchanges, taking into account 
the evolving technology of computer science. The 
first version of the language was issued in I 976, 
followed by new standardised versions in I 980, 
1984, 1988, 1992 and 1996 [I I]. Its graphical and 
textual syntax and semantics are formally defined. 
Since the 1992 version, called SDL-92, the language 
also contains object oriented extensions. The 
overview of the language below is based on SDL-88 
however, as described in [12] and [13], since the 
object oriented extensions do not add to the basic 
underlying concepts of the language. The object 
oriented features are summarised in Section 5. 

3. OVERVIEW OF THE SOL LANGUAGE 

SOL provides several classes of constructs to model 
the properties of complex systems. These constructs 
represent 

• the dynamic behaviour of the different parts of 
the system 

• the system structure identifying the co-operating 
parts 

• the communication within the system and 
between the system and its environment 

• the internal information affected and affecting the 
behaviour of the system 

3.1. System Behaviour 

The behaviour of a system is modelled by the 
combined behaviour of concurrent processes which 
communicate asynchronously through discrete 
messages called signals. More than one instance of a 
process may exist in a system. In what follows, the 
word process may also mean process instance, 
unless stated otherwise. Each process is an 
autonomous extended finite state machine (i.e. a 
finite state machine that can use and manipulate data 
stored in variables local to the machine). The 
environment of the system also communicates with 
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processes within the system using signals. The 
behaviour of a process is deterministic; it reacts to 
external stimuli according to its state machine 
description. Constructs to describe non deterministic 
behaviour have been added in SDL-92 [ 17]. 

A process has a memory of its own for the storage of 
variables. A process cannot write to the variables of 
another process. All variables are therefor local to 
the process to which they belong and can only be 
modified indirectly by another process using signals. 

Each process has a unique address. A signal always 
contains the address of the sending process in 
addition to possible data values that one process may 
want to send to another process. The receiving 
process therefor always knows the address of the 
sending process. 

Each process has an infinite first-in-first-out input 
queue, where incoming signals are queued. A 
process is either in a state waiting for an input 
signal, or performs a transition between two states. 
A transition is triggered by the first signal in the 
input queue. When a signal has initiated a transition, 
it is removed from the input queue (and is said to be 
consumed). In a transition, variables can be 
manipulated, decisions can be made, new processes 
can be created and signals can be sent (to other 
processes or to the process itself). 

No assumption is made about the time that a signal 
will remain in a queue or about the duration of a 
state transition. The only assumption is that a signal 
can only be consumed after it has been output. The 
semantics of time in SDL therefor do not provide 
any facilities for performance modelling. Extensions 
to SOL for performance modelling are receiving 
research attention however. An extension of the 
SOL syntax to attach performance sub-models to 
SOL-specifications is proposed in [14]. Biitow et al. 
on the other hand describes the introduction of time 
semantics for performance modelling without 
affecting the syntax of SOL [15]. 

3.2. System Structure 

Structuring of a system provides a means to deal 
with complexity. The main structuring element is the 
block. A system can be divided into blocks and a 
block can again be partitioned into blocks, resulting 
in a block tree structure with the system as the root 
block. Leaf blocks are not partitioned and contain 
only processes. Within a block signals are conveyed 
between processes on signal routes. Signal routes 
also connect the processes in a block to the 
boundary of the block. Between blocks, as well as 
between blocks and the environment of the system, 
signals are conveyed on channels. 

3.3. Internal Information 

In SOL the abstract data type approach has been 
chosen to represent internal information in the 
system. All data types (predefined as well as user 
defined) are defined in an implementation 
independent way in terms of their properties only. 
The definition of an abstract data type has three 
components: 

• a set of values 

• a set of associated operations 

• a set of definitions defining these operations 

3.4. Representation Forms 

SDL has both a graphical and a textual 
representation form. The graphical form, called 
SDL/GR uses a graphical syntax to give an 
overview, combined with a textual syntax for some 
concepts where graphical symbols are not suitable 
(e.g. abstract data types). The textual phrase 
representation SOL/PR uses only a textual syntax 
which overlaps the textual syntax of SDL/GR. 

4. BASIC SYSTEM STRUCTURE 

4.1. System 

The top level of the system structure is called the 
system diagram. An example of a system diagram 
for a simplified traffic signal control system is 
shown in Fig. 1. It shows a system that consists of 
vehicle detectors, a manual control panel, an 
intersection stager and signal lamps. The 
intersection stager controls the signal lamps and can 
react to inputs from vehicle detectors and the 
manual control panel. 

The system diagram usually contains: 

• a frame, representing the boundary between the 
system and its environment (which is not 
described). Similar frame symbols are used in all 
SOL diagrams to delimit the entity being 
described from its environment. Channels may 
also have an associated but unspecified delay - an 
implicit first-in-first-out queue in each direction 
which delays a signal for an arbitrary time 

• a heading containing the system name 

• descriptions of the blocks of the system 

• descriptions of the channels connecting the 
blocks of the system and between the blocks and 
the environment. A channel has a name, a list of 
the signals that it can convey in each direction, 
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Heading Frame symbol Channel without delay Block reference Signal 

SYSTEM TrafficSignalControl 

[On.Off] 

Detector 

Vehicle_ 
Detector_ 
Handler DetRequest [(Req)] 

[LmpOn, 
Intersection_ (Ack)] [(LampCmd ] LmpO 

--------....i SignalLamps 1---------
Stager LampControl Lamps 

Manual_ 
Control_ 

Panel 

[(Req)] 

Man Request 

Signallist Channel name 

Fig. I. Example of a system diagram. 

and the identification of the endpoints of the 
channel 

• descriptions of the signals visible on the channels 
at this level. A signal has a name, and the types of 
values conveyed by the signal 

• descriptions of the user defined data types visible 
in the whole system and its environment 

Textual descriptions, such as descriptions of signals 
and abstract data types, are placed in a text symbol in 
SOL/GR. 

SOL provides a referencing mechanism enabling the 
separation of the use of a structuring construct, e.g. a 
block or a process, from its actual description. In 
Fig. I, the actual description of block SignalLamps 
is referenced by a rectangle containing the name of 
the block. This mechanism is used by computer 
aided tools to allow the user to work on a specific 
part of the system description, referencing parts in 
the next lower level and being referenced by the 
next higher level in the system hierarchy. 

4.2. Block 

A block is described by a block diagram. An 
example of the leaf block SignalLamps of the 
TrafficSignalControl system is shown in Fig. 2. It 
consists of a process ConflictChecker and a process 
lamp. An instance of the lamp process controls the 
colours of a set of signal lights working in unison. 
Commands to change the colour (i.e. state) of a 

SIGNAL 
On(lnteger),Off(lnteger),LmpOn(lnteger), 
LmpOff(lnteger),Manual,Auto, 
Button(lnteger); 

SIGNALLIST Pin = 
Manual,Auto,Button(lnteger); 

Part of text symbol 

Lamp process instance are passed through the 
ConjlictChecker process to ensure that conflicting 
signal lights are not green simultaneously. These 
commands are acknowledged by the Lamp process. 

A block diagram usually contains: 

• a heading containing the block name 

• descriptions of the blocks or processes contained 
in the block 

• descriptions of the channels between blocks or 
signal routes between processes and to the 
environment of the block 

• channel to channel connections or channel to 
route connections specifying the connection 
between channels external to the block and 
internal channels or signal routes to the 
environment of the block 

The block diagram may also contain signal and data 
type descriptions similar to the system diagram. 
These descriptions are then only visible within the 
block. 

4.3. Process 

A process description defines a process type. During 
interpretation of the system description more than 
one instance of a process may exist. These instances 
can either be created automatically at system start­
up or dynamically by another parent process during 
system interpretation. Processes can also terminate 
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Heading Signal route Process reference 

[(LampCmd)] 

LampControl 

Channel name Process create 

Fig. 2. Example of a block diagram. 

themselves, i.e. a trans1t1on can result m process 
termination instead of entering a state. 

A process description is called a process diagram. It 
contains: 

• the process name 

• formal parameters, used to pass data from a 
parent process during dynamic process 
instantiation 

• descriptions of process variables and timers 

• descriptions of procedures 

• the process graph, which describes the finite state 
machine behaviour of the process 

5. PROCESS BEHAVIOUR 

The behaviour of a process is described in a process 
diagram. An example of a process diagram for the 
Lamp process of the TrafficSigna/Control system is 
shown in Fig. 3. There are five basic constructs for 
the description of the behaviour of a process: 

start - the starting point of process behaviour at 
process creation 

state - to wait in a specified state for input 

ConflictChecker 

Lamp 
(0,16) 

[(Ack)] 

Control 

Lamps 

[LmpOn, 
LmpOff] 

Process with 0 initial 
instances and maximum 
of 16 instances 

Lamps 

input - to start a trans1t10n on consumption of a 
specified input signal. The input construct contains 
the name of a signal and a list of variables which 
will assume the values of the actual parameters 
conveyed by the signal 

output - to send a specified signal to a process. It 
contains the name of a signal and a list of actual 
parameters. The addressing of the target process can 
either be explicit by specifying the address of the 
receiving process instance, or implicit by specifying 
the signal route that the signal must follow or by 
letting the interpreter determine the target address. 
In the latter case, if more than one process instance 
have the signal defined as a valid input, the selection 
of the receiving process is arbitrary 

nextstate ~ indicating the end of a trans1t1on, the 
process is again in a state waiting for input 

These are augmented by the following constructs: 

timer - to describe time dependent behaviour. 
Timers can be set and reset during transitions, and 
when a timer expires, a timer signal is generated and 
queued in the input queue of the process 

decision - to describe alternative behaviour based on 
the values of process variables 
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PROCESS Lamp 

MinGreen Yellow 

MinGreen- Yellow-

c=) Timer Timer Start 

SET(NOW+ 
LmpOff Green RedTime) 

I I I I 
RedTimer 

Procedure call 

Off Green Off 
LmpOn 
(Red) 

( ) State, 
Nextstate 

LmpOn 
(Yellow) 

Min Red 

) Input SET(NOW+ 
Off, Red Yellow Time) 

Red-

Yellow Timer 
Timer 

) Green On 
GreenOff-

Terminated 
Output 

Ack 

LmpOn 
Yellow Red Task, Timer set, 

(Green) Timer reset 

SET(NOW+ 
MinGreen) 

~ D Procedure 
MinGreenTimer 

Initialize reference 

Green On-
*(Off, Red) 

Ack 

TIMER I /Save 

MinGreenTimer, 

MinGreen YellowTimer, 
RedTimer; 

I Text symbol 

All states except Off or Red 

Fig. 3. Example ofa process diagram. 

task - an assignment of the result of a data type 
operator to a process variable 

create - to dynamically create an instance of a 
process. The creating and created process must 
belong to the same block 

stop - process termination, at the end of a transition 

procedure - to call procedures from within a process 
or from another procedure. A procedure belongs to a 
process. It can have its own states, but it shares the 

same valid input signal set as the enclosing process. 
Procedure descriptions can also be referenced 

save - to keep a signal in the input queue and 
consume the next signal in the queue 

label and join - to jump from one part of a state 
graph to a label at another part of the state graph 

enabling condition - to enable signal consumption 
and state transitions only when a given condition is 
satisfied 
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remote procedures - introduced in SDL-92 as an 
alternative to ordinary signal communication 

shared variables - apart from the explicit inter­
object communication mechanism of normal signal 
exchange to gain access to the variables of a process, 
a variable declared as revealed in one process may 
be viewed (but not modified) by another process in 
the same block. This provides an implicit inter­
object communication mechanism in SOL, which 
overcomes the shortcoming of OMT as discussed by 
van den Heever and Kourie elsewhere in this issue 
[16). 

To convey information between processes in 
different blocks, a variable may be exported during a 
transition by a process in one block, and then later 
imported during a transition by a process in another 
block. This is really a shorthand construct for inter­
process communication with signals. A shorthand 
construct is defined in terms of other constructs and 
ultimately by the primitive constructs. 

Additional shorthand constructs are available. It 
simplifies the use of the language and reduces the 
size of a system description. An example of the 
'asterisk state' shorthand is shown in Fig. 3. This is 
a useful shorthand when a given input should cause 
the same transition in all states. 

6. OBJECT ORIENT A TION 

The SOL model of concurrent communicating 
processes with encapsulated data and process types 
that are instantiated is inherently object based. 
However, the re-use of parts of descriptions is not 
directly supported by this model. Object oriented 
structuring features were added to the language in 
the 1992 version to support re-use [ 17). These 
features will be briefly summarised here. For an 
introduction to SDL-92, the reader is referred to 
[18), while a complete treatment can be found in 
[ 19) or [20). 

In SDL-92 there is a clear distinction between types 
and instances, not only of processes, signals and 
data, but also of blocks and complete systems. 
Instances are the entities in an interpreted system, 
while types define the properties of the instances in 
an interpreted system. The types themselves are not 
part of the interpreted system instance [18). 

Since block types or process types can be defined as 
standalone entities, to be used later in different 
system descriptions, the notion of a gate is 
introduced. A gate provides a connection point or 
interface on the boundary of a block or a process, to 
which channels or routes can be connected when the 
type is used in a specific system description. Just as 

for channels or signal routes, the signal types that 
may be conveyed by a gate must be described. 

Powerful object oriented concepts are available for 
handling types. A type may be a specialisation (i.e. 
an extension) of another type. The extended type is 
called a subtype and the original type a supertype. A 
subtype may need to modify the supertype for 
specific needs, by redefining some of the locally 
defined types of the supertype. The supertype 
determines which types the subtype may redefine. 
These redefinable types are called virtual types. For 
types which define state machines, such as process 
types or procedure types, the state transitions may 
also be redefined by a subtype. These redefinable 
transitions are called virtual transitions. 

Types that can be specialised may also be generic. A 
generic type is incomplete as it refers to entities 
which are not bound to a definition of the type. 
These entities are called formal context parameters. 
When a generic type with formal context parameters 
are used, actual context parameters must be 
supplied to complete the description of the generic 
type. Several similar types may thus be built from a 
generic type, by supplying different context 
parameters. rt is also possible to place formal 
constraints on the formal context parameters, which 
must be obeyed by the actual context parameters. 

A collection of types can be grouped into a 
package, as defined by a package diagram. This 
allows for types only to be defined once for 
subsequent use in the definition of different system 
instances or other packages. By using a package in a 
system diagram, for example, all the types contained 
in the package are then available to be used in the 
system diagram. 

7. COMPUTER AIDED TOOLS 

The formal and standardised definition of SDL made 
the development of sophisticated tools possible to 
aid the use of SOL during all phases of software 
development. Two of the commercially available 
tools are SOT from Telelogic in Sweden and 
ObjectGeode from Verilog in France [8). These 
tools can run on different platforms ranging from 
PC's to workstations. Both of these tools allow: 

• Graphical editing with on-line syntax analysis 
and semantic help to describe the structure and 
behaviour of systems 

• Translation between SOL/GR and SOL/PR 

• Static semantic analysis of a description 

• Simulation of a specification to analyse the 
dynamic semantics of a description 
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• Exhaustive simulation to check all possible 
behaviours of a description 

• Automatic code generation 

• Test suite generation for automatic test execution 

An SOL tool with similar functionality, except code 
generation, has also been developed at the DNA 
laboratory of·the Department of Computer Science, 
University of Cape Town. 

A common interchange format (CIF) to allow the 
interchange of SOL descriptions between tools from 
different vendors is currently being standardised by 
the ITU. 

8. INDUSTRIAL EXPERIENCE 

BSW Data South recently started using SOL after 
evaluating and purchasing a commercial tool. The 
first application was a pilot project involving the 
embedded software for a traffic signal controller. A 
team of three software engineers developed the 
software for the controller using conventional 
techniques and coding in C. In parallel the software 
was developed by one engineer using a commercial 
SOL tool set, which generates C code automatically. 
After a period of about two months both efforts 
could demonstrate controller software with the same 
functionality. The SOL effort resulted in a 
significant increase in productivity. On the other 
hand, the automatically generated code required 
significantly more memory space and computer 
processing power. This is considered a small price to 
pay, however, as the cost of computer resources is 
continually decreasing. SOL is now being used to 
engineer the software of a much larger real time 
application. 

It was found that software engineers who are used to 
conventional languages such as C need to make a 
paradigm shift when starting to use SOL. This 
sometimes causes a reluctance to grasp the benefits 
of a formal descriptive technique. The focus of the 
problem now shifts away from the implementation 
domain to the requirements domain. Requirements 
need to be thoroughly analysed before it can be 
specified formally. Effort needs to be spent on 
defining the protocols of communication between 
processes and between the system and its 
environment before the behaviour of each individual 
process is described. 

It became clear that to use SOL effectively it must 
be applied within a methodology which emphasises 
a proper requirements analysis phase. To this end, 
commercial SOL tool vendors are now providing 
special analysis and modelling tools as front ends to 
their SOL tool chains. These tools are based on the 

Object Modelling Technique (OMT) of Rumbauch 
et al. [21]. Braek and Haugen also proposes a 
methodology emphasising requirements analysis and 
conceptual modelling before specifying a system in 
SOL [19]. 

To apply SOL successfully requires a commitment 
from management to invest in the training of people 
and to develop and adopt a methodology for the 
effective use of SOL and associated tools. 

Industrial experience with SOL has been reported 
widely in the literature. The use of SOL in an ISON 
terminal design was already reported in 1989 when 
only limited tool support existed [22). Chung et. al. 
describes the use of SOL in the development of the 
software for a public telephone switching system 
and emphasises the improvement that SOL achieves 
in the communication among development teams 
[23] . Koono et. al. describes their experiences in 
using SOL for a telephone switching system, a voice 
response system, a digital telephone, a fax machine 
and a test bench for a switching system [24]. They 
conclude that the use of SOL has significantly 
improved their software engineering process. 

Klick et al. also describes the use of SOL in 
enhancing the feature set of an existing telephone 
switch [25]. They show how SOL supports the 
extensive use of iteration in the development process 
including requirements definition, design, 
implementation and testing. They state that the 
graphical representation of SOL made it easy to 
describe, review, update and restructure the evolving 
requirements and design. 

The introduction of SOL into GEC Plessey 
Telecommunications (GPT) in the United Kingdom 
to improve their software development practices is 
described by Sandhu [26). He states that the 
adoption of SOL can only be successful if there is 
commitment from management as well as users, as 
the use of SOL requires the acquisition of expensive 
tools, the development of a methodology and the 
training of people by means of pilot projects. He 
emphasises the benefits of the formal use of SOL, 
namely simulation and code generation with 
appropriate tools. He concludes that "if they had the 
opportunity to tum the clock back and were given 
another chance, they would still choose SOL for 
their applications". A specific example of the use of 
SOL within GPT, a call processing subsystem for a 
telephone exchange, is reported by Wiggins [27]. He 
found that during development SOL helped to 
identify errors in both the requirements and the 
coding. 

The application of SOL to system level design of 
hardware in the context of hardware/software co­
design is described by Glunz [28] . An example of a 
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processor communicating with RAM is shown and 
the translation of SOL to VHDL is discussed. 

Carracedo et. al. describes the use of SOL tools to 
facilitate incremental prototyping in the 
development of a gateway between two ISON 
signalling systems [29). They note a shift in effort 
from the implementation phase to the specification 
phase when compared with conventional methods. 

Experience in the use of SOL in the specification 
and implementation of a trunking mobile radio 
system is reported by Zaim et. al. [30]. They report a 
I 00% improvement in productivity by using SOL 
tools and have decided to increase the use of SOL in 
future projects. 

The use of formal SOL for the specification and 
validation of Inmarsat Aeronautical system 
protocols for global communication between aircraft 
and ground stations is described by Mitchell and Lu 
[31). They note that the formal use of SOL to obtain 
unambiguous specifications results in a large volume 
of specifications which makes it difficult to present 
to a large user community. 

The development of the software for a public branch 
exchange (PBX) using SOL is reported by Robnik 
et. al. [32]. They describe the use of a commercial 
SOL tool from prototype to product, including 
automatic code generation. They also emphasise the 
need for a well defined methodology to guide the 
use of SOL during system development. 

Experience of introducing rigorous use of SOL at 
Siemens is described by Amsj0 and Nyeng [33]. 
They state that using SOL resulted in a real 
improvement in terms of calendar time to complete 
the software for a military data terminal. 

The use of SOL to specify future Airbus air 
navigation systems at Aerospatiale is described by 
Goudenove and Doldi [34). They have found that 
the early test of system specifications allowed by 
commercial tools detected errors which would not 
have been discovered with conventional methods. 

9. CONCLUSION 

With sophisticated computer tools available, the 
practical application of a formal description 
technique such as SOL in the engineering of 
complex software systems has become possible. The 
graphical syntax makes it user friendly. The effort in 
the development of systems shifts from the 
traditional implementation and testing phases to the 
specification phase. Formal testing and simulation of 
specifications allows detection and correction of 
errors early in a project at minimum cost. Automatic 

code generation makes implementation a simple task 
and provides continual traceability between 
implementation and specification during the total 
life cycle of a product. 

The effective use of SOL requires a methodology 
emphasising object oriented requirements analysis 
and modelling during the early phases of software 
engineering. 

Industrial experience shows significant 
improvements in quality and productivity when SOL 
is used in the engineering of complex software 
systems. This is particularly true in the case of real 
time systems. 
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