
September 1996 THE TRANSACTIONS OF THE S.A. INSTITUTE OF ELECTRICAL ENGINEERS

THE FORMAL DESCRIPTIVE TECHNIQUE SDL
IN SOFTWARE ENGINEERING

J.C. van der Walt*

*BSW Data South. Tokai, Western Cape, South Africa

Abstract. Formal descriptive techniques provide a means to describe and manage the behaviour and
structure of complex systems. In the last few years powerful commercial tool support for the formal
descriptive technique SOL (Specification and Description Language) became available. This allows
for the practical application of SOL in the software engineering process. A brief overview of the SOL
language is given. The basic SOL concepts available to describe the structure and behaviour of
systems are also explained. The typical capabilities of tools are listed and industrial experience with
SOL is described. A comprehensive list of references identifies the available information on SOL.

Key Words. Complex systems; interactive systems; real time systems; formal descriptive techniques;
SDL; software engineering; system specification; object orientation

1. INTRODUCTION

Modem software systems can be very complex.
Typical examples are the software that control real
time systems such as public and private telephone
exchanges, urban traffic controllers, pay phones,
assembly line controllers, safety systems on board
aircraft, and automatic teller machine systems. Apart
from functional requirements, these systems must
normally satisfy severe safety, reliability and quality
of service requirements which increase the
complexity of the control software. The required
behaviour of complex systems is difficult to specify,
model and test. Time to market further requires that
these systems be developed by large development
teams which require accurate means of
communicating concepts and requirements.

The very first step in engineering the software of a
new system is the identification of all the
requirements that the software must satisfy. This is
typically done in a natural language which often
results in ambiguous requirements[l ,2]. It is also
very difficult to determine the completeness and
consistency of these requirements. From these
requirements, expressed in a natural language,
different people develop different conceptual models
of the problem. This inevitably leads to
misunderstanding and miscommunication, resulting
in an inefficient software engineering process.

The use of a formal description technique (FDT) to
capture the required behaviour and structure of
complex systems can assist greatly in solving these
problems. A formal language with formal semantics
forces the software engineer to unambiguously

define each and every concept used to describe the
required behaviour of the complex parts of a system.
This results in clear, precise and concise
specifications [3].

Since specifications now have a formal basis,
requirements can be analysed for completeness,
correctness and consistency by executing the
specification in a simulation environment.
Completeness is verified by testing that the
specification describes the required behaviour for all
the possible combinations of external inputs to the
system. Correctness and consistency is determined
by exploring the state space for deadlock situations
and for parts of the specification which are never
executed.

Conceptual problems which would normally only
show up late in the software engineering process
during detailed design and implementation, can now
be identified early when the cost of modifications is
still small. FDTs focus the software engineering
effort on the early phases of system development to
ensure that the final implementation will be based on
sound requirements.

A FDT has been likened to a mirror, not only
showing the structural grace and functional
consistency of a system design, but also its structural
poverty and functional deficiency [4]. Although it
may seem tedious at first, FDTs force the designer
to consider and control all aspects of the complex
parts of a system.

118

119 THE TRANSACTIONS OF THE S.A. INSTITUTE OF ELECTRICAL ENGINEERS September 1996

Using a FDT also provides a basis for determining
conformance of implementations to specifications
since the required behaviour is now well defined.

Since a FDT has a formal syntax and semantics, it
allows for computer based tool support to create,
maintain, analyse, simulate and implement
specifications. Commercial tools have matured in
the last few years and now enable the software
engineer to practically apply FDTs m the
development of complex software systems.

Three FDTs have been standardised by international
bodies, namely ESTELLE (Extended Finite State
Machine Language), LOTOS (Language of
Temporal Ordering Specifications) and SOL
(Specification and Description Language) [4].
ESTELLE and LOTOS were developed within the
International Organisation for Standardisation (ISO)
while SOL was developed by the International
Telegraph and Telephone Consultative Committee
(CC ITT, now called the International
Telecommunication Union or ITU). ESTELLE [5]
and SOL are based on communicating finite state
machines, while LOTOS is based on process
algebraic methods [6,7]. After an extensive literature
and Internet search it was found that SOL currently
has the best available commercial tool support,
making it the candidate FDT in a commercial
software engineering environment. This has
prompted BSW Data South to start using SOL in the
software engineering ofreal time systems.

The purpose of this paper is to provide a very brief
introduction to SOL and the capabilities of the tools
that are available. Industrial experience with SOL at
BSW Data South as well as at other companies
reported in the literature, are summarised. A
comprehensive list of references to text books and
available literature will enable the interested reader
to gain further knowledge of SOL. An SOL
Newsletter is published approximately once a year
under the auspices of the ITU. General information
on SOL and SOL tools are also available on the
Internet [8].

2. SOL

SOL is recommended by the ITU for the
unambiguous specification and description of the
behaviour of systems. Although SOL originated
within the telecommunications field, it has a much
broader application area, covering all concurrent,
reactive, distributed systems. It is particularly suited
to real time systems. It allows for a formal definition
of the behaviour and structure of complex systems
in a clear and concise way that can be understood,
communicated and analysed independently from the
implementation.

In this respect it differs from the visual language
proposed by Mostert [9] which also contains
constructs for physical implementation issues such
as direct memory access (OMA) and interrupts. SOL
allows the user to focus on required behaviour and
structure and to postpone implementation decisions
until requirements are clearly defined and
understood.

The development of SOL started in 1968 when the
ITU recognised the need for a new language to
specify and describe the functional features of
systems [10]. The language started from the well
known model of finite state machines used by
telecommunication engineers to design
electromechanical exchanges, taking into account
the evolving technology of computer science. The
first version of the language was issued in I 976,
followed by new standardised versions in I 980,
1984, 1988, 1992 and 1996 [I I]. Its graphical and
textual syntax and semantics are formally defined.
Since the 1992 version, called SDL-92, the language
also contains object oriented extensions. The
overview of the language below is based on SDL-88
however, as described in [12] and [13], since the
object oriented extensions do not add to the basic
underlying concepts of the language. The object
oriented features are summarised in Section 5.

3. OVERVIEW OF THE SOL LANGUAGE

SOL provides several classes of constructs to model
the properties of complex systems. These constructs
represent

• the dynamic behaviour of the different parts of
the system

• the system structure identifying the co-operating
parts

• the communication within the system and
between the system and its environment

• the internal information affected and affecting the
behaviour of the system

3.1. System Behaviour

The behaviour of a system is modelled by the
combined behaviour of concurrent processes which
communicate asynchronously through discrete
messages called signals. More than one instance of a
process may exist in a system. In what follows, the
word process may also mean process instance,
unless stated otherwise. Each process is an
autonomous extended finite state machine (i.e. a
finite state machine that can use and manipulate data
stored in variables local to the machine). The
environment of the system also communicates with

September 1996 THE TRANSACTIONS OF THE S.A. INSTITUTE OF ELECTRICAL ENGINEERS

processes within the system using signals. The
behaviour of a process is deterministic; it reacts to
external stimuli according to its state machine
description. Constructs to describe non deterministic
behaviour have been added in SDL-92 [17].

A process has a memory of its own for the storage of
variables. A process cannot write to the variables of
another process. All variables are therefor local to
the process to which they belong and can only be
modified indirectly by another process using signals.

Each process has a unique address. A signal always
contains the address of the sending process in
addition to possible data values that one process may
want to send to another process. The receiving
process therefor always knows the address of the
sending process.

Each process has an infinite first-in-first-out input
queue, where incoming signals are queued. A
process is either in a state waiting for an input
signal, or performs a transition between two states.
A transition is triggered by the first signal in the
input queue. When a signal has initiated a transition,
it is removed from the input queue (and is said to be
consumed). In a transition, variables can be
manipulated, decisions can be made, new processes
can be created and signals can be sent (to other
processes or to the process itself).

No assumption is made about the time that a signal
will remain in a queue or about the duration of a
state transition. The only assumption is that a signal
can only be consumed after it has been output. The
semantics of time in SDL therefor do not provide
any facilities for performance modelling. Extensions
to SOL for performance modelling are receiving
research attention however. An extension of the
SOL syntax to attach performance sub-models to
SOL-specifications is proposed in [14]. Biitow et al.
on the other hand describes the introduction of time
semantics for performance modelling without
affecting the syntax of SOL [15].

3.2. System Structure

Structuring of a system provides a means to deal
with complexity. The main structuring element is the
block. A system can be divided into blocks and a
block can again be partitioned into blocks, resulting
in a block tree structure with the system as the root
block. Leaf blocks are not partitioned and contain
only processes. Within a block signals are conveyed
between processes on signal routes. Signal routes
also connect the processes in a block to the
boundary of the block. Between blocks, as well as
between blocks and the environment of the system,
signals are conveyed on channels.

3.3. Internal Information

In SOL the abstract data type approach has been
chosen to represent internal information in the
system. All data types (predefined as well as user
defined) are defined in an implementation
independent way in terms of their properties only.
The definition of an abstract data type has three
components:

• a set of values

• a set of associated operations

• a set of definitions defining these operations

3.4. Representation Forms

SDL has both a graphical and a textual
representation form. The graphical form, called
SDL/GR uses a graphical syntax to give an
overview, combined with a textual syntax for some
concepts where graphical symbols are not suitable
(e.g. abstract data types). The textual phrase
representation SOL/PR uses only a textual syntax
which overlaps the textual syntax of SDL/GR.

4. BASIC SYSTEM STRUCTURE

4.1. System

The top level of the system structure is called the
system diagram. An example of a system diagram
for a simplified traffic signal control system is
shown in Fig. 1. It shows a system that consists of
vehicle detectors, a manual control panel, an
intersection stager and signal lamps. The
intersection stager controls the signal lamps and can
react to inputs from vehicle detectors and the
manual control panel.

The system diagram usually contains:

• a frame, representing the boundary between the
system and its environment (which is not
described). Similar frame symbols are used in all
SOL diagrams to delimit the entity being
described from its environment. Channels may
also have an associated but unspecified delay - an
implicit first-in-first-out queue in each direction
which delays a signal for an arbitrary time

• a heading containing the system name

• descriptions of the blocks of the system

• descriptions of the channels connecting the
blocks of the system and between the blocks and
the environment. A channel has a name, a list of
the signals that it can convey in each direction,

120

121 THE TRANSACTIONS OF THE S.A. INSTITUTE OF ELECTRICAL ENGINEERS September 1996

Heading Frame symbol Channel without delay Block reference Signal

SYSTEM TrafficSignalControl

[On.Off]

Detector

Vehicle_
Detector_
Handler DetRequest [(Req)]

[LmpOn,
Intersection_ (Ack)] [(LampCmd] LmpO

--------....i SignalLamps 1---------
Stager LampControl Lamps

Manual_
Control_

Panel

[(Req)]

Man Request

Signallist Channel name

Fig. I. Example of a system diagram.

and the identification of the endpoints of the
channel

• descriptions of the signals visible on the channels
at this level. A signal has a name, and the types of
values conveyed by the signal

• descriptions of the user defined data types visible
in the whole system and its environment

Textual descriptions, such as descriptions of signals
and abstract data types, are placed in a text symbol in
SOL/GR.

SOL provides a referencing mechanism enabling the
separation of the use of a structuring construct, e.g. a
block or a process, from its actual description. In
Fig. I, the actual description of block SignalLamps
is referenced by a rectangle containing the name of
the block. This mechanism is used by computer
aided tools to allow the user to work on a specific
part of the system description, referencing parts in
the next lower level and being referenced by the
next higher level in the system hierarchy.

4.2. Block

A block is described by a block diagram. An
example of the leaf block SignalLamps of the
TrafficSignalControl system is shown in Fig. 2. It
consists of a process ConflictChecker and a process
lamp. An instance of the lamp process controls the
colours of a set of signal lights working in unison.
Commands to change the colour (i.e. state) of a

SIGNAL
On(lnteger),Off(lnteger),LmpOn(lnteger),
LmpOff(lnteger),Manual,Auto,
Button(lnteger);

SIGNALLIST Pin =
Manual,Auto,Button(lnteger);

Part of text symbol

Lamp process instance are passed through the
ConjlictChecker process to ensure that conflicting
signal lights are not green simultaneously. These
commands are acknowledged by the Lamp process.

A block diagram usually contains:

• a heading containing the block name

• descriptions of the blocks or processes contained
in the block

• descriptions of the channels between blocks or
signal routes between processes and to the
environment of the block

• channel to channel connections or channel to
route connections specifying the connection
between channels external to the block and
internal channels or signal routes to the
environment of the block

The block diagram may also contain signal and data
type descriptions similar to the system diagram.
These descriptions are then only visible within the
block.

4.3. Process

A process description defines a process type. During
interpretation of the system description more than
one instance of a process may exist. These instances
can either be created automatically at system start­
up or dynamically by another parent process during
system interpretation. Processes can also terminate

September 1996 THE TRANSACTIONS OF THE S.A. INSTITUTE OF ELECTRICAL ENGINEERS

Heading Signal route Process reference

[(LampCmd)]

LampControl

Channel name Process create

Fig. 2. Example of a block diagram.

themselves, i.e. a trans1t1on can result m process
termination instead of entering a state.

A process description is called a process diagram. It
contains:

• the process name

• formal parameters, used to pass data from a
parent process during dynamic process
instantiation

• descriptions of process variables and timers

• descriptions of procedures

• the process graph, which describes the finite state
machine behaviour of the process

5. PROCESS BEHAVIOUR

The behaviour of a process is described in a process
diagram. An example of a process diagram for the
Lamp process of the TrafficSigna/Control system is
shown in Fig. 3. There are five basic constructs for
the description of the behaviour of a process:

start - the starting point of process behaviour at
process creation

state - to wait in a specified state for input

ConflictChecker

Lamp
(0,16)

[(Ack)]

Control

Lamps

[LmpOn,
LmpOff]

Process with 0 initial
instances and maximum
of 16 instances

Lamps

input - to start a trans1t10n on consumption of a
specified input signal. The input construct contains
the name of a signal and a list of variables which
will assume the values of the actual parameters
conveyed by the signal

output - to send a specified signal to a process. It
contains the name of a signal and a list of actual
parameters. The addressing of the target process can
either be explicit by specifying the address of the
receiving process instance, or implicit by specifying
the signal route that the signal must follow or by
letting the interpreter determine the target address.
In the latter case, if more than one process instance
have the signal defined as a valid input, the selection
of the receiving process is arbitrary

nextstate ~ indicating the end of a trans1t1on, the
process is again in a state waiting for input

These are augmented by the following constructs:

timer - to describe time dependent behaviour.
Timers can be set and reset during transitions, and
when a timer expires, a timer signal is generated and
queued in the input queue of the process

decision - to describe alternative behaviour based on
the values of process variables

122

123 THE TRANSACTIONS OF THE S.A. INSTITUTE OF ELECTRICAL ENGINEERS September 1996

PROCESS Lamp

MinGreen Yellow

MinGreen- Yellow-

c=) Timer Timer Start

SET(NOW+
LmpOff Green RedTime)

I I I I
RedTimer

Procedure call

Off Green Off
LmpOn
(Red)

() State,
Nextstate

LmpOn
(Yellow)

Min Red

) Input SET(NOW+
Off, Red Yellow Time)

Red-

Yellow Timer
Timer

) Green On
GreenOff-

Terminated
Output

Ack

LmpOn
Yellow Red Task, Timer set,

(Green) Timer reset

SET(NOW+
MinGreen)

~ D Procedure
MinGreenTimer

Initialize reference

Green On-
*(Off, Red)

Ack

TIMER I /Save

MinGreenTimer,

MinGreen YellowTimer,
RedTimer;

I Text symbol

All states except Off or Red

Fig. 3. Example ofa process diagram.

task - an assignment of the result of a data type
operator to a process variable

create - to dynamically create an instance of a
process. The creating and created process must
belong to the same block

stop - process termination, at the end of a transition

procedure - to call procedures from within a process
or from another procedure. A procedure belongs to a
process. It can have its own states, but it shares the

same valid input signal set as the enclosing process.
Procedure descriptions can also be referenced

save - to keep a signal in the input queue and
consume the next signal in the queue

label and join - to jump from one part of a state
graph to a label at another part of the state graph

enabling condition - to enable signal consumption
and state transitions only when a given condition is
satisfied

September 1996 THE TRANSACTIONS OF THE S.A. INSTITUTE OF ELECTRICAL ENGINEERS

remote procedures - introduced in SDL-92 as an
alternative to ordinary signal communication

shared variables - apart from the explicit inter­
object communication mechanism of normal signal
exchange to gain access to the variables of a process,
a variable declared as revealed in one process may
be viewed (but not modified) by another process in
the same block. This provides an implicit inter­
object communication mechanism in SOL, which
overcomes the shortcoming of OMT as discussed by
van den Heever and Kourie elsewhere in this issue
[16).

To convey information between processes in
different blocks, a variable may be exported during a
transition by a process in one block, and then later
imported during a transition by a process in another
block. This is really a shorthand construct for inter­
process communication with signals. A shorthand
construct is defined in terms of other constructs and
ultimately by the primitive constructs.

Additional shorthand constructs are available. It
simplifies the use of the language and reduces the
size of a system description. An example of the
'asterisk state' shorthand is shown in Fig. 3. This is
a useful shorthand when a given input should cause
the same transition in all states.

6. OBJECT ORIENT A TION

The SOL model of concurrent communicating
processes with encapsulated data and process types
that are instantiated is inherently object based.
However, the re-use of parts of descriptions is not
directly supported by this model. Object oriented
structuring features were added to the language in
the 1992 version to support re-use [17). These
features will be briefly summarised here. For an
introduction to SDL-92, the reader is referred to
[18), while a complete treatment can be found in
[19) or [20).

In SDL-92 there is a clear distinction between types
and instances, not only of processes, signals and
data, but also of blocks and complete systems.
Instances are the entities in an interpreted system,
while types define the properties of the instances in
an interpreted system. The types themselves are not
part of the interpreted system instance [18).

Since block types or process types can be defined as
standalone entities, to be used later in different
system descriptions, the notion of a gate is
introduced. A gate provides a connection point or
interface on the boundary of a block or a process, to
which channels or routes can be connected when the
type is used in a specific system description. Just as

for channels or signal routes, the signal types that
may be conveyed by a gate must be described.

Powerful object oriented concepts are available for
handling types. A type may be a specialisation (i.e.
an extension) of another type. The extended type is
called a subtype and the original type a supertype. A
subtype may need to modify the supertype for
specific needs, by redefining some of the locally
defined types of the supertype. The supertype
determines which types the subtype may redefine.
These redefinable types are called virtual types. For
types which define state machines, such as process
types or procedure types, the state transitions may
also be redefined by a subtype. These redefinable
transitions are called virtual transitions.

Types that can be specialised may also be generic. A
generic type is incomplete as it refers to entities
which are not bound to a definition of the type.
These entities are called formal context parameters.
When a generic type with formal context parameters
are used, actual context parameters must be
supplied to complete the description of the generic
type. Several similar types may thus be built from a
generic type, by supplying different context
parameters. rt is also possible to place formal
constraints on the formal context parameters, which
must be obeyed by the actual context parameters.

A collection of types can be grouped into a
package, as defined by a package diagram. This
allows for types only to be defined once for
subsequent use in the definition of different system
instances or other packages. By using a package in a
system diagram, for example, all the types contained
in the package are then available to be used in the
system diagram.

7. COMPUTER AIDED TOOLS

The formal and standardised definition of SDL made
the development of sophisticated tools possible to
aid the use of SOL during all phases of software
development. Two of the commercially available
tools are SOT from Telelogic in Sweden and
ObjectGeode from Verilog in France [8). These
tools can run on different platforms ranging from
PC's to workstations. Both of these tools allow:

• Graphical editing with on-line syntax analysis
and semantic help to describe the structure and
behaviour of systems

• Translation between SOL/GR and SOL/PR

• Static semantic analysis of a description

• Simulation of a specification to analyse the
dynamic semantics of a description

124

125 THE TRANSACTIONS OF THE S.A. INSTITUTE OF ELECTRICAL ENGINEERS September 1996

• Exhaustive simulation to check all possible
behaviours of a description

• Automatic code generation

• Test suite generation for automatic test execution

An SOL tool with similar functionality, except code
generation, has also been developed at the DNA
laboratory of·the Department of Computer Science,
University of Cape Town.

A common interchange format (CIF) to allow the
interchange of SOL descriptions between tools from
different vendors is currently being standardised by
the ITU.

8. INDUSTRIAL EXPERIENCE

BSW Data South recently started using SOL after
evaluating and purchasing a commercial tool. The
first application was a pilot project involving the
embedded software for a traffic signal controller. A
team of three software engineers developed the
software for the controller using conventional
techniques and coding in C. In parallel the software
was developed by one engineer using a commercial
SOL tool set, which generates C code automatically.
After a period of about two months both efforts
could demonstrate controller software with the same
functionality. The SOL effort resulted in a
significant increase in productivity. On the other
hand, the automatically generated code required
significantly more memory space and computer
processing power. This is considered a small price to
pay, however, as the cost of computer resources is
continually decreasing. SOL is now being used to
engineer the software of a much larger real time
application.

It was found that software engineers who are used to
conventional languages such as C need to make a
paradigm shift when starting to use SOL. This
sometimes causes a reluctance to grasp the benefits
of a formal descriptive technique. The focus of the
problem now shifts away from the implementation
domain to the requirements domain. Requirements
need to be thoroughly analysed before it can be
specified formally. Effort needs to be spent on
defining the protocols of communication between
processes and between the system and its
environment before the behaviour of each individual
process is described.

It became clear that to use SOL effectively it must
be applied within a methodology which emphasises
a proper requirements analysis phase. To this end,
commercial SOL tool vendors are now providing
special analysis and modelling tools as front ends to
their SOL tool chains. These tools are based on the

Object Modelling Technique (OMT) of Rumbauch
et al. [21]. Braek and Haugen also proposes a
methodology emphasising requirements analysis and
conceptual modelling before specifying a system in
SOL [19].

To apply SOL successfully requires a commitment
from management to invest in the training of people
and to develop and adopt a methodology for the
effective use of SOL and associated tools.

Industrial experience with SOL has been reported
widely in the literature. The use of SOL in an ISON
terminal design was already reported in 1989 when
only limited tool support existed [22). Chung et. al.
describes the use of SOL in the development of the
software for a public telephone switching system
and emphasises the improvement that SOL achieves
in the communication among development teams
[23] . Koono et. al. describes their experiences in
using SOL for a telephone switching system, a voice
response system, a digital telephone, a fax machine
and a test bench for a switching system [24]. They
conclude that the use of SOL has significantly
improved their software engineering process.

Klick et al. also describes the use of SOL in
enhancing the feature set of an existing telephone
switch [25]. They show how SOL supports the
extensive use of iteration in the development process
including requirements definition, design,
implementation and testing. They state that the
graphical representation of SOL made it easy to
describe, review, update and restructure the evolving
requirements and design.

The introduction of SOL into GEC Plessey
Telecommunications (GPT) in the United Kingdom
to improve their software development practices is
described by Sandhu [26). He states that the
adoption of SOL can only be successful if there is
commitment from management as well as users, as
the use of SOL requires the acquisition of expensive
tools, the development of a methodology and the
training of people by means of pilot projects. He
emphasises the benefits of the formal use of SOL,
namely simulation and code generation with
appropriate tools. He concludes that "if they had the
opportunity to tum the clock back and were given
another chance, they would still choose SOL for
their applications". A specific example of the use of
SOL within GPT, a call processing subsystem for a
telephone exchange, is reported by Wiggins [27]. He
found that during development SOL helped to
identify errors in both the requirements and the
coding.

The application of SOL to system level design of
hardware in the context of hardware/software co­
design is described by Glunz [28] . An example of a

September 1996 THE TRANSACTIONS OF THE S.A. INSTITUTE OF ELECTRICAL ENGINEERS

processor communicating with RAM is shown and
the translation of SOL to VHDL is discussed.

Carracedo et. al. describes the use of SOL tools to
facilitate incremental prototyping in the
development of a gateway between two ISON
signalling systems [29). They note a shift in effort
from the implementation phase to the specification
phase when compared with conventional methods.

Experience in the use of SOL in the specification
and implementation of a trunking mobile radio
system is reported by Zaim et. al. [30]. They report a
I 00% improvement in productivity by using SOL
tools and have decided to increase the use of SOL in
future projects.

The use of formal SOL for the specification and
validation of Inmarsat Aeronautical system
protocols for global communication between aircraft
and ground stations is described by Mitchell and Lu
[31). They note that the formal use of SOL to obtain
unambiguous specifications results in a large volume
of specifications which makes it difficult to present
to a large user community.

The development of the software for a public branch
exchange (PBX) using SOL is reported by Robnik
et. al. [32]. They describe the use of a commercial
SOL tool from prototype to product, including
automatic code generation. They also emphasise the
need for a well defined methodology to guide the
use of SOL during system development.

Experience of introducing rigorous use of SOL at
Siemens is described by Amsj0 and Nyeng [33].
They state that using SOL resulted in a real
improvement in terms of calendar time to complete
the software for a military data terminal.

The use of SOL to specify future Airbus air
navigation systems at Aerospatiale is described by
Goudenove and Doldi [34). They have found that
the early test of system specifications allowed by
commercial tools detected errors which would not
have been discovered with conventional methods.

9. CONCLUSION

With sophisticated computer tools available, the
practical application of a formal description
technique such as SOL in the engineering of
complex software systems has become possible. The
graphical syntax makes it user friendly. The effort in
the development of systems shifts from the
traditional implementation and testing phases to the
specification phase. Formal testing and simulation of
specifications allows detection and correction of
errors early in a project at minimum cost. Automatic

code generation makes implementation a simple task
and provides continual traceability between
implementation and specification during the total
life cycle of a product.

The effective use of SOL requires a methodology
emphasising object oriented requirements analysis
and modelling during the early phases of software
engineering.

Industrial experience shows significant
improvements in quality and productivity when SOL
is used in the engineering of complex software
systems. This is particularly true in the case of real
time systems.

REFERENCES

[I] B. Meyer, "On formalism in specifications'',
IEEE Software, pp. 6-26, Jan. 1985.

[2] J. Wing, "A Specifiers introduction to formal
methods'', IEEE Computer, pp. 8-24, Sept.
1990.

[3) F. Belina et al., SDL with applications from
protocol specification, London: Prentice Hall,
1991.

(4] K Turner, Usingformal description techniques,
An introduction to ESTELLE, LOTOS and
SDL, John Wiley & Sons, 1993.

[5] S. Budkowski and P. Dembinski, "An
introduction to ESTELLE: A specification
language for distributed systems", Computer
Networks and ISDN Systems, vol 14, pp. 3-23,
1987.

[6] T. Bolognesi and E. Brinksma, "Introduction to
the ISO Specification Language LOTOS",
Computer Networks and ISDN Systems, vol 14,
pp. 25-59, 1987.

[7] L. Logrippo et al., "An introduction to
LOTOS: learning by examples", Computer
Networks and ISDN Systems, vol 23, pp. 325-
342, 1992.

[8] World Wide Web address for general SOL
information: http://www.tdr.dk/public/SDL.

[9] S. Mostert, "A visual method for real-time
software engineering", ibid.

[IO] R. Saracco and P.A.J. Tilanus, "CCITT SOL:
Overview of the language and its applications",
Computer Networks and ISDN Systems, vol 13,
1987.

[l l] "CC ITT Recommendation Z.100: Specification
and Description Language SOL", Blue Book,
Volume X.l-X.5, Geneva: ITU, 1988.

[12] F. Belina and D. Hogrefe, "The CCITT­
Specification and description language SOL",

126

127 THE TRANSACTIONS OF THE S.A. INSTITUTE OF ELECTRICAL ENGINEERS September 1996

Computer Networks and ISDN Systems, vol 16,
pp. 311-341, 1988/89.

[13] R. Braek, "SDL Basics", tutorial presented at
7th SDL Forum, Oslo, Sept. 1995.

[14] M. Diefenbruch et al., "Performance
evaluation of SDL systems adjunct by
queueing models", SDL '95 with MSC in CASE,
Proceedings of the 7th SDL Forum,
Amsterdam: Elsevier Science, 1995, pp. 231-
242.

[15] M. Biitow et al., "Performance modelling with
the formal specification language SDL", to be
presented at FORTE/PSTV'96, Joint Int. Conf.
on FDTs for distributed systems and
communication protocols and protocol
specification, testing and verification,
Kaiserslautem, Oct. 1996.

[16] R. van den Heever and D. Kourie, "Explicit
and implicit inter-object communication", ibid.

[17] "CCI TT Specification and Description
Language (SDL) , Revised recommendation
Z. l 00", COM X-R 26, Geneva: ITU, 1992.

[18] 0. Faergemand and A. Olsen, "Introduction to
SDL-92", Computer Networks and JSDN
Systems, vol 26, pp. 1143-1167, 1994.

[19] R. Braek and 0. Haugen, Engineering real time
systems. An object-oriented methodology using
SDL, Heme! Hempstead: Prentice Hall, 1993.

[20] A. Olsen et al., Systems engineering using
SDL-92, Amsterdam: Elsevier Science, 1994.

[21] J. Rumbauch et al., Object-oriented modeling
and design, Englewood Cliffs: Prentice-Hall,
1991.

[22] D. Carl, "The use of SDL in an ISDN terminal
design", SDL '89: The language at work,
Proceedings of the 4th SDL Forum,
Amsterdam: Elsevier Science, 1989, pp. 367-
376.

[23] C.J. Chung et al., "Using SOL in switching
system development", SDL '89: The language
at work, Proceedings of the 4th SOL Forum,
Amsterdam: Elsevier Science, 1989, pp. 377-
386.

[24] Z. Koono et al., "Experiences in applying
SOL", SDL '89: The language at work,
Proceedings of the 4th SOL Forum,
Amsterdam: Elsevier Science, 1989, pp. 395-
404.

[25] V.B. Klick et al. "Experiences in the use of
SOL/GR in the software development process",
SDL '91: Evolving Methods, Proceedings of the
5th SOL Forum, Amsterdam: Elsevier Science,
1991, pp. 449-458.

[26] K.K. Sandhu, "The introduction of CClTT
SOL into GPT", SDL'91: Evolving Methods,

Proceedings of the 5th SOL Forum,
Amsterdam: Elsevier Science, 1991, pp. 4 71-
482.

[27] M.A. Wiggins, "An example of the use of SOL
within GPT", SDL'91: Evolving Methods,
Proceedings of the 5th SOL Forum,
Amsterdam: Elsevier Science, 1991, pp. 499-
508.

[28] W. Glunz et al., "System-level hardware
design with SOL", SDL '93: Using Objects,
Proceedings of the 6th SOL Forum,
Amsterdam: Elsevier Science, 1993, pp. 17-28.

[29] J. Carracedo et al., "An industrial experience
on SOL introduction in a conventional
development life cycle", SDL '93: Using
Objects, Proceedings of the 6th SOL Forum,
Amsterdam: Elsevier Science, 1993, pp. 29-40.

[30] A. Zaim et al., "Using SOL in a commercially
available wide area coverage trunking mobile
radio system development", SDL '93: Using
Objects, Proceedings of the 6th SOL Forum,
Amsterdam: Elsevier Science, 1993, pp. 41-50.

[31] L. Mitchell and S. Lu, "Specifications and
validations of Inmarsat aeronautical system
protocols'', SDL '93: Using Objects,
Proceedings of the 6th SOL Forum,
Amsterdam: Elsevier Science, 1993, pp. 51-64.

[32] A. Robnik et al., "Industrial experience o.f
using SOL in lskraTel'', SDL '95 with MSC in
CASE, Proceedings of the 7th SOL Forum,
Amsterdam: Elsevier Science, 1995, pp. 3-14.

[33] G. Amsj0 and A. Nyeng, "SOL-based software
development in Siemens A/S", SDL '95 with
MSC in CASE, Proceedings of the 7th SOL
Forum, Amsterdam: Elsevier Science, 1995,
pp. 339-348.

[34] F. Goudenove and L. Ooldi, "Use of SOL to
specify Airbus future air navigation systems",
SDL '95 with MSC in CASE, Proceedings of the
7th SOL Forum, Amsterdam: Elsevier Science,
1995, pp. 359-370.

